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Applications of isotope effects in solids
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This article reviews the current status of the employment of the isotope effect in solids.
Diffusion, self-diffusion processes with different isotopes in pure materials and
heterostructures (quantum wells), neutron transmutation doping of different
semiconducting crystals, optical fiber as well as use isotope-mixed crystals (C, LiH) as the
generator of the coherent radiation in the ultraviolet range of the spectrum are the main
modern applications of isotope science and engineering. There are briefly discussed the
other future applications including modern personal computer, isotope-based quantum
computer as well as information storage. We hope to give sufficient references to
published work so that the interested reader can easily find the primary literature sources
to this rapidly expanding field of solid state physics. C© 2003 Kluwer Academic Publishers

Introduction
The availability of isotopically pure crystals with low
carrier and impurity concentrations has allowed in the
last three decades the investigation of isotope effects
on lattice dynamical and electronic properties of solids
[1]. The results of experimental and theoretical stud-
ies of the fundamental properties of the objects of re-
search that earlier were simply in accessible (naturally
with exception of LiHx D1−x crystals) briefly are pre-
sented in the reviews [2–4]. The use of such objects
allows the investigation of not only the isotope ef-
fects in lattice dynamics (elastic, thermal and vibra-
tional properties) but also the influence of such effects
on the electronic states via electron-phonon coupling
(the renormalization of the band-to-band transition en-
ergy Eg, the exciton binding energy EB and the size
of the longitudinal-transverse splitting �LT). The ther-
mal conductivity enhancement in the isotopically en-
riched materials amounts (C, Ge, Si) to almost 60%
at room temperature and is close to a factor six at the
thermal conductivity maximum around 20 K (Si-case)
(see also [3, 4]). The change in the lattice constant is
�a/a ∼ 10−3 ÷ 10−4, while the change δcik in the elas-
tic constants amounts to several percent. In addition,
crystals of different isotopic compositions possess dif-
ferent Debye temperatures. This difference between a
LiH crystal and its deuteride exceeds hundred degrees.
Of the same order of magnitude is the difference be-
tween Debye temperatures for diamond crystals. Very
pronounced and general effects of isotopic substitution
are observed in phonon spectra. The Raman lines in iso-
topically mixed crystals are not only shifted (the shift of
LO phonon lines exceeds 100 cm−1) but are also broad-
ened. This broadening is related to the isotopic disorder
of a crystal lattice. It is shown that the degree of change
in the scattering potential is different for different

isotopic mixed crystals [1]. In the case of semiconduct-
ing crystals (C, Ge, Si, α-Sn etc.), phonon scattering is
weak, which allows one to successfully apply the coher-
ent potential approximation (CPA) for describing shift
and broadening of scattering lines in Raman spectra
[2, 3]. In the case of LiH, the change in the scattering
potential is so strong that it results in phonon localiza-
tion, which is directly observed in experiments [1, 4].

Substituting a light isotope with a heavy one in-
creases the interband transition energy Eg (excluding
Cu-salts) and the binding energy of the Wannier-Mott
exciton EB as well as the magnitude of the longitudinal-
transverse splitting �LT [5, 6]. The nonlinear variation
of these quantites with the isotope concentration is due
to the isotopic disordering of the crystal lattice and is
consistent with the concentration dependence of line
halfwidth in exciton reflection and luminescence spec-
tra. A comparative study of the temperature and iso-
topic shift of the edge of fundamental absorption for a
large number of different semiconducting and insulat-
ing crystals indicates that the main (but not the only)
contribution to this shift comes from zero oscillations
whose magnitude may be quite considerable and com-
parable with the energy of LO phonons. The theoretical
description of the experimentally observed dependence
of the binding energy of the Wannier-Mott exciton EB
on the nuclear mass requires the simultaneous consid-
eration of the exchange of LO phonons between the
electron and hole in the exciton, and the separate inter-
actions of carriers with LO phonons (see also [1]). The
experimental dependence EB ∼ f (x) for LiHx D1−x

crystals fits in well enough with the calculation accord-
ing to the model of large-radius exciton in a disordered
medium; hence it follows that the fluctuation smear-
ing of the band edges is caused by isotopic disorder-
ing of the crystal lattice. Due to zero-point motion, the
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atoms in a solid feel the anharmonicity [7] of the inter-
atomic potential even at low temperatures. Therefore,
the lattice parameters of two chemically identical crys-
tals formed by different isotopes do not coincide heav-
ier isotopes having smaller zero-point delocalization
(as expected in a harmonic approximation) and smaller
lattice parameters (an anharmonic effect). Moreover,
phonon—related properties such as thermal conductiv-
ity, thermal expansion or melting temperature, are ex-
pected to depend on the isotope mass (details see [1]).

Our brief discussion, we start with a fact that phonon
frequency are directly affected by changes of the aver-
age mass of the whole crystal or its sublattice (VCA-
model), even if we look upon them as noninteracting
particles, i.e., as harmonic oscillators. The direct influ-
ence of the isotope mass on the frequencies of coupled
phonon modes may been used to determine their eigen-
vectors. Secondly, the mean square amplitude 〈u2〉 of
phonons depend on the isotope masses only at low tem-
perature, while they are determined by the temperature
T only, once T becomes larger than Debye temperature.
A refinement of these effects must take place when tak-
ing interactions among phonons into account. These
interactions lead to finite phonon lifetimes and addi-
tional frequency renormalization. The underlying pro-
cesses can be divided into two classes: (1) anharmonic
interactions in which a zone center phonon decays into
two phonons or more with wave-vector and energy con-
servation, and (2) elastic scattering in which a phonon
scatters into phonons of similar energies but different
wave-vectors. While the former processes arise from
cubic and quartic terms in the expansion of lattice po-
tential [7], the latter are due to the relaxed wave-vector
conservation rule in samples that are isotopically dis-
ordered and thus not strictly translationally invariant.
Since the vast majority of compounds derive from el-
ements having more than one stable isotope, it is clear
that both processes are present most of the time. Unfor-
tunately, their absolute sizes and relative importance
cannot be predicted easily. However, isotope enrich-
ment allows one to suppress the elastic scattering in-
duced by isotope disorder. In contrast, the anharmonic
phonon-phonon interaction cannot be suppressed, so
that isotope-disorder-induced effects can only be stud-
ied against a background contribution from anharmonic
processes. However, if one assumes that the two pro-
cesses are independent of each other one can measure
the disorder-induced renormalization by comparison of
phonon energies and linewidth of isotopically pure sam-
ples with those gained from disordered ones.

The isotopic composition affects the band-gaps
through the electron-phonon coupling and through the
change of volume with isotopic mass. Although the
electronic properties of different isotopes of a given
atom are, to a very good approximation, the same,
isotope substitution in a crystal modifies the phonon
spectrum which, in turn, modifies the electron energy
bands through electron-phonon interaction. Measuring
the energy gaps in samples with different isotopic com-
position then yields the difference in the changes of
the valence- and conduction-band renormalization. The
reason for the changes lies in the fundamental quantum-

mechanical concept of zero-point motion—the vibra-
tional energy that the atoms in the crystal have, even
at low temperatures. If we excite an electron from one
electronic state to another, we actually excite the whole
crystal. In other words, we move the crystal from a
ground state made up of low-energy electrons plus zero-
point vibrations to an excited state in which there is
one excited electron plus the zero-point vibrations of
the crystal. The values of the zero-point energy in the
two electronic states are slightly different because the
vibrational frequencies depend on the chemical bond-
ing, which is changed by exciting an electron. If the
average mass of the vibrating atoms is increased, then
the vibrational frequencies will be reduced. As a result,
the difference in zero-point motions will be smaller,
and the transition energy will therefore increase with
increasing mass [1].

Present review is devoted to description of differ-
ent applications of the isotope effect in solids. In
the Chapter 1 we detail analyze the process of self-
diffusion in isotope pure materials and heterostructure.
Interest in diffusion in solids is as old as metallurgy or
ceramics, but the scientific study of the phenomenon
may probably be dated some sixth-seven decades ago.
As is well-known, the measured diffusion coefficient
depends on the chemistry and structure of the sam-
ple on which it is measured. We have organized the
chapter around general principles that are applicable
to all materials. We are briefly discussed the SIMS
(secondary ion mass spectrometry) technique. In SIMS
technique, the sample is bombarded by reactive ions,
and the sputtered-off molecules are ionized in a plasma
and fed into a mass-spectrometer. Self-diffusion is the
migration of constituent atoms in materials. This pro-
cess is mediated by native defects in solids and thus can
be used to study the dynamics and kinetics of these de-
fects. The knowledge obtained in these studies is pivotal
for the understanding of many important mass transport
processes such as impurity diffusion in solids.

Chapter 2 describes the new reactor technology—
neutron transmutation doping (NTD). Capture of ther-
mal neutrons by isotope nuclei followed by nuclear de-
cay produces new elements, resulting in a very number
of possibilities for isotope selective doping of solids.
There are presented different facilities which use in this
reactor technology. The feasibility of constructing re-
actors dedicated to the production of NTD silicon, ger-
manium (and other compounds) was analyzed in terms
of technical and economic viability and the practicality
of such a proposal is examined. The importance of this
technology for studies of the semiconductor doping as
well as metal-insulator transitions and neutral impu-
rity scattering process is underlined. The introduction
of particle irradiation into processing of semiconduc-
tor materials and devices creates a new need for addi-
tional understanding of atomic-displacement-produced
defects in semiconductors. It is shown that measure-
ment of decay rates of induced radioactivity and the
system of clearance and certification such as to allow
the solids to be internationally transported as “Exemt
Material”, as defined in IAEA Regulations, are dealt
with.
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The use of the isotopes in a theory and technology
of the optical fibers we considered in Chapter 3. This
chapter is addressed to readers who wish to learn about
fiber communications systems and, particular, about the
properties of optical fibers. Very briefly in this chapter
we describe the Maxwell equations as well as wave
electromagnetic equation. In this chapters we describe
not only the properties of optical fibres but also the ma-
terials for optical fiber and fiber technology. For the first
time it was shown also the influence of the isotopes on
properties of the optical fibers.

Chapter 4 is devoted the application of isotope effect
in laser physics. There is short description of theory
and practice of semiconductor lasers. The discovery of
the linear luminescence of free excitons observed over
a wide temperature range has placed lithium hydride,
as well as crystals of diamond in line as prospective
sources of coherent radiation in the UV spectral range.
For LiH isotope tuning of the exciton emission has also
been shown [1].

The last chapter of this review is devoted to descrip-
tion of the other unexplored applications of isotopic en-
gineering. In the first place we considered the materials
for information storage in modern personal computers
as well as in biology. In this chapter is shown that iso-
topic substitution has made it possible to produce the
objects of research that earlier were simply inaccessi-
ble (with exception of the LiH-LiD system). The use
of such objects allows the investigation of not only the
isotope effects in lattice dynamics (elastic, thermal and
vibrational properties) but also the influence of such ef-
fects on the electronic states (the renormalization of the
band-to-band transition energy Eg, the exciton binding
energy EB, and the size of the longitudinal-transverse
splitting �LT). Very perspective is isotope-based quan-
tum computer. We should add here that the strength of
the hyperfine interaction is proportional to the probabil-
ity density of the electron wavefunction at the nucleus.
In semiconductors, the electron wavefunction extends
over large distances through the crystal lattice. Two
nuclear spins can consequently interact with the same
electron, leading to electron-mediated or indirect nu-
clear spin coupling. Because the electron is sensitive to
externally applied electric fields, the hyperfine interac-
tion and electron-mediated nuclear spin interaction can
be controlled by voltages applied to metallic gates in
a semiconductor device, enabling the external manip-
ulation of nuclear spin dynamics that is necessary for
quantum computation in quantum computers (details
see [383, 384]).

A brief summary is presented in the conclusion. The
difficult and unsolvable problems of isotope effects in
solids are considered there. The main aim of this review
is to familiarize readers with present and some future
applications in isotope science and engineering.

Chapter 1. Process of self-diffusion in
isotope pure materials and
heterostructures

1.1. General remarks
Interest in diffusion is as old as metallurgy or ceramics.
The first measurement of diffusion in the solid state was

made by Roberts–Austen in 1896 [8]. Many measure-
ments, especially of chemical diffusion in metals, were
made in the 1930s; the field was reviewed by Mehl
[9], Jost [10], and Seith [11]. Diffusion research in-
creased after World War II; the increase was motivated
by the connection among diffusion, defects, and radi-
ation damage and helped by the availability of many
artificial radiotracers. These researchers were the first
to attempt to identify the basic underlying atomistic
mechanisms responsible for mass transport through
solids by a quantitative investigations and theoretical
analysis of the activation energies required for diffu-
sion by exchange, interstitial, and vacancy mechanisms
in solids. Prior to this time, there had been little con-
cern with treating diffusional phenomena on a micro-
scopic basis, and most research was concerned with
fairly crude observation of overall bulk transfer pro-
cesses at junctions between regions with strong compo-
sitional differences. It was at this time that suggestions
on how to carry out high-precision, highly reproducible
diffusion experiments were first put forward (Slifkin
et al. [12], Tomizuka [13]). The three major factors
that determine the quality of a diffusion measurement
are

1. the method used,
2. the care taken in the measurement, and
3. the extent to which the material is specified [14].

The most accurate method has, in general, been con-
sidered to be radiotracer sectioning (Tomizuka [13]),
and most of this article is devoted to this method, es-
pecially to points for which special care must be taken;
these are the measurement of temperature, the accu-
racy of sectioning, and the reproducibility of count-
ing the radioactivity. The importance of specifying the
material cannot be overstated. The measured diffusion
coefficient depends on the chemistry and structure of
the sample on which it is measured. Impurities, non-
stoichiometry of compounds, grain boundaries, and
dislocations can give apparent values of the diffusion
coefficient that are different from, and usually larger
than, the true value (see also [15, 16]). The objective
of this chapter is to describe some experimental re-
sults as well as their theoretical analysis that are re-
ceived in last decade. We have organized the chap-
ter around general principles that are applicable to
all materials, and then listed the particulars. The ma-
terials we consider are mainly inorganic solids, es-
pecially semiconductor and insulator materials. The
effects of pressure on diffusion is omitted. Previous
reviews covering mainly metals and inorganic materi-
als have been given by Hoffman [17], Tomizuka [13],
Cadek and Janda [18], Adda and Pholibert [19], Lundy
[20], Beniere [21] and last two book of Academic Press
[22, 23].

Radioactive tracers are essential to many of the exper-
iments described in this chapter [24–27]. Radioactive
tracers are hazardous materials, and the experimenter
who uses them is under the strongest moral obligation
to avoid exposure of his colleagues and contamination
of his environment.
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1.2. The relation of diffusion experiments
to the mathematics of diffusion

For measurable diffusion to take place a gradient of
some kind is necessary. Diffusion is a consequence of
the hopping motion of atoms through a solid. The dif-
fusion coefficient D is defined in Fick’s first law (Fick
[28]),

�J = −D �∇C + C �V (1)

where �J is the flux of atoms, C their concentration, and
�V the velocity of the center of mass, which moves due
to the application of a force such as an electric field or a
thermal gradient (see also [29]). A number of different
diffusion coefficients exist, e.g., for the diffusion of a
radioactive tracer in a chemically homogeneous solid
in the absence of external forces,

�J ∗ = −D∗ �∇C∗ (2a)

where the asterisk denotes the radioactive species. For
diffusion in a chemical gradient,

�J = −D̃ �∇C (2b)

where D̃ is the interdiffusion or chemical diffusion co-
efficient. Any of these equations can be combined with
the equation of continuity

∂C/∂t = −�∇ · �J (3)

to yield Fick’s second law

∂C/∂t = �∇ · (D∇C) (4a)

where the mass flow term has been omitted. For a tracer
in a homogeneous system,

∂C∗/∂t = −�∇∗ · �∇2C∗. (4b)

Equations 4a and 4b describe the types of diffusion
experiments discussed in this chapter.

The tracer diffusion coefficient is given also in the
atomistic form

D∗ = γ a2	 f (5)

where γ is a geometric factor, a the jump distance,
	 the atomic jump frequency, and f the correlation
factor (see, e.g. [29]). It is thus possible, in principle, to
measure D∗ by mesuring 	 in a resonance experiment
of some kind [30, 31].

We are concerned here with diffusion measurements
where the diffusion coefficient is obtained via Fick’s
second law, i.e., from a solution of the diffusion equa-
tion (see, also [1]). Fick’s second law is used rather than
his first because concentrations are easier to measure
than fluxes and because of D in the solid state are so
small that the required steady state is seldom reached.
In order to obtain a solution of the diffusion equation,
the initial and boundary conditions (IC and BC) must

be known. The IC correspond to the distribution of the
diffusing substance in the sample before the diffusion
anneal, and the BC describe what happens to the dif-
fusing substance at the boundaries of the sample dur-
ing the diffusion anneal. If the experimental IC and BC
correspond to the mathematical conditions, the mathe-
matical solution to the diffusion equation C(x, y, z, t)
will describe the distribution of the diffusing substance
as a function of position in the sample and of annealing
time. The diffusion coefficient is finally obtained by fit-
ting the experimentally determined C(x, y, z, t) to the
appropriate solution of the diffusion equation with D
as a parameter.

Most laboratory experiments are arranged so that dif-
fusion takes place in one dimension. The solution of
the diffusion equation is then C(x, t). One most often
determines C(x) at constant t , i.e., the concentration
distribution along the diffusion direction after a diffu-
sion annealing time t . It is also possible to determine
C(t) at a constant x (e.g., the concentration at a surface)
or

∫∫
C(x, t)dxdt (e.g., the weight gain of a sample as

a function of time). The IC, BC, and solutions to the
diffusion equation (for D = const) for some common
geometries are described below. These, and solutions
for other cases, are given by Crank [32] and Carslaw
and Jaeger [33].

1. Thin Layer or Instantaneous Source Geometry
(Fig. 1a). An infititesimally thin layer (�(Dt)1/2) of
diffusing substance is deposited on one surface of a
semi-infinitive (�(Dt)1/2) solid. The initial conditions
is

C(x, 0) = Mδ(x) (6)

where δ is the Dirac delta function and M the strength
of the source in atoms per unit area. The boundary con-
dition is

∂C(0, t)/∂t = 0 (7)

i.e., there is no flux through the surface. The solution is

C(x, t) = (M/
√

π Dt) exp(−x2/4Dt). (8)

One determines C(x) for constant t .
2. Thick Layer Geometry (see Fig. 1b). Similar to

the above, except that the layer thickness h is of order
of the diffusion distance:

IC : C(x, 0) = C0, h ≥ x ≥ 0
(7a)

C(x, 0) = 0, x > h.

BC : ∂C(0, t)/∂x = 0 (8a)

solution:

C(x, t) = C0

2

[
erf

(
x + h

2
√

Dt

)
− erf

(
x−h

2
√

Dt

)]
, (9)
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Figure 1 Concentration distributions for different initial conditions.
Dotted line is for t = 0, solid line is for a finite t . (a) Thin layer ge-
ometry [case (1)]; (b) thick layer geometry [case (2)]; solid curve for
Dt = h2; (c) infinite couple [case (3)] (after Crank [32]).

where

erf(λ) = 2√
π

∫ λ

0
exp(−η2)dη. (10a)

Measure C(x) for constant t . Note:

erfc(λ) ≡ 1 − erf(λ). (10b)

3. Infinite Couple (see Fig. 1c). A sample of uniform
concentration C0 is welded to a sample of uniform con-
centration C1. The weld plane is situated at x = 0.
Couple containing a volatile

IC: C(x, 0) = C1, x < 0
(11)

C(x, 0) = C0, x > 0

Solution:

C ′(x, t) ≡ C(x, t)−C0

C1−C0
=

[
1 − erf

(
x

2
√

Dt

)]
. (12)

Measure C(x) for constant t .
4. Vapor-Solid Coule. A semi-infinite couple con-

taining a volatile component component is placed into
a dynamic vacuum at t = 0:

IC : C(x, 0) = C0, x > 0 (13a)

BC : C(0, t) = 0, t > 0. (13b)

Solution:

C(x, t) = C0erf(x/2
√

Dt). (14a)

Exposing a sample initially devoid of volatile com-
ponent to a vapor of the volatile componenet at a
pressure in equilibrium with C0 gives the analogous
mathematics:

IC : C(x, 0) = 0, x > 0 (14b)

BC : C(0, t) = C0, t > 0. (15a)

Solution:

C(x, t) = C0[1 − erf(x/2
√

Dt]

= C0erfc(x/2
√

Dt). (15b)

The same equations apply to isotopic exchange be-
tween solid and vapor. Measure either C(x) at constant
t or integral weight gain (loss)

∫ ∞

0

∫ t

0
C(x, t)dtdx .

5. Grain Boundary Diffusion. The mathematics in
this case are more complicated (see, e.g. [34]), owing
to the coupled lattice diffusion, but one still measures
C(x) at constant t .

6. Exchange experiment [35]. This technique is used
for materials for which a massive sample cannot be
prepared. It involves diffusion exchange between an
assembly of powder and a gas of limited volume, from
which very small aliquots are drawn at different times.

In the first three sample configurations two bodies
of widely different composition are brought into con-
tact. The assumption implicit in the BC is that diffus-
ing material passes across the resulting interface with-
out hindrance, i.e., it is not held up by surface oxides,
low solubility, chemical reactions, etc. Nonfulfillment
of this condition leads to deviation of the experimental
C(x) from solution of the diffusion equation (details
see [36]).

In the vapor-solid couple and the exchange exper-
iment, the assumption implicit in the BC is that the
surface of the solid equilibrates with the gas phase in-
stantaneously. However, optical measurements of the
change of the surface concentration at low temperature
have indicated that the attainment of solid-gas equilib-
rium can be slow process (see also [37]).

In this connection we should add, that the thin ge-
ometry has several advantages. The thin layer can be
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deposited without straining the sample, which is es-
sential for single crystal samples. A thin layer also al-
lows the use of high specific radioisotopes, and thus
measurements of diffusion without a chemical gradi-
ent. Diffusion under large chemical gradient can lead
to deformation of the sample and generation of defects
(see, also [38–41]). For the above reasons, the thin layer
geometry is most often used in experiments in which
diffusion is measured in order to study the fundamen-
tals of diffusion and defect behavior in solids. Such
experiments usually concern diffusion as a function of
temperature, pressure, or concentration, and small dif-
ferences in D are import, in contrast to engineering
experiments in which the magnitude of the penetration
of one material into another is of interest.

It should be noted that all the solutions to the diffusion
equation considered above are expressed in terms of
the dimensionless variable x/(2

√
Dt). The length is

a kind 2
√

Dt is a kind of mean penetration distance,
and this has to be the same order of magnitude as the
characteristic distance associated with an experiment.
For sectioning experiment, the characteristic distance
is the section thickness. For ion-beam depth profiling,
it is the ion range, etc. [27].

In the ordinary thin-layer sectioning experiment, one
wishes to measure diffusion over a drop in specific ac-
tivity C of ∼103; any effects due to diffusion along
short-circuiting paths are likely to show up as curva-
ture in the penetration plot over such a range, while
they may not be visible if the measurement is only over
factor of 6 in C [42]. Usually twenty sections suffice to
define a penetration plot; from Equation 8, the section
thickness required to get a drop of 103 in C over 20
sections is

θ ≈
√

Dt/3.8. (16)

A preliminary estimate of D is useful in planning an
experiment.

If the isotope decays significantly during the time of
the experiment, more radioisotope has to be deposited.
Under the conditions of θ ≈ √

Dt/3.8, the specific ac-
tivity drops by a factor of ∼2 per section at the twentieth
section. These last points on the penetration plot have
the greatest weight in determining D, so the counting
statistics must be maintained and the penetration plot
extended as far as possible. This implies use of an in-
tense source of radioisotope, on the other hand, too
much activity poses an unnecessary health hazard as
well as increasing the dead-time correction. The radio-
tracer may rapidly reach the side surfaces of the sample
by surface diffusion or evaporation, and then diffuse
inward. To keep the diffusion one-dimensional, one re-
moves ≈ 6

√
Dt from the sides of the sample before

sectioning.

1.3. Self-diffusion process
As is well-known, in all diffusion mechanisms the
atoms under consideration have to carry out jumps be-
tween different sites (see, e.g. [43]). If the extreme case
of coherent tunneling [44] is left aside, the diffusional

jumps are assisted by the thermal movement of the
atoms. In the standard situation the jump rate is en-
tirely determined by the temperature T (apart from the
effects of hydrostatic pressure, which may be incorpo-
rated by formulating the theory in terms of enthalpy
and Gibbs free energy). For the purposes of the present
chapter, we may in the first approximation disregard
quantum mechanical contribution to the diffusity (nat-
urally excluding the self-diffusion in LiH), so that in
cubic crystals the diffusion coefficient under standard
conditions may be written as an Arrhenius expression

Dα = Dα0 exp
( − H M

α

/
kT

)
(17)

with the preexponential factor

Dα0 = gαa2
0να0 exp

(
SM

α

/
k
)

(18)

Here H M
α denotes the enthalpy and SM

α the entropy of
migration, a0 the lattice constant, and να0 the attempt
frequency, k has its usual meaning as Boltzmann’s con-
stant, and gα is a factor that takes into account the ge-
ometry of the crystal structure and the atomistic details
of the different process. The subscript α refers to the
defect species controlling the diffusion process, i.e.,
in the case of the direct interstitial mechanism it indi-
cates the chemical nature, geometrical configuration,
etc., of the interstitial involved, whereas in the case of
indirect diffusion it characterizes the intrinsic defects
acting as diffusion vehicles. In the latter case, we should
write β instead of α if we wish to indicate that these in-
trinsic defects are monovacancies or monointerstitials.

The tracer self-diffusion coefficient, i.e., the diffusity
of radioactive self-atoms under thermal-equilibrium
conditions, is given by (see also [43])

DT =
∑

β=I,V

fβ DSD
β =

∑
β=I,V

fβ DβCeq
β (19)

where

Ceq
β = exp

(
SF

β

/
k
)

exp
(−H F

β

/
kT

)
(20)

are the concentrations of self-interstitials (β = I ) and
monovacancies (β = V ) in thermal equilibrium. As
it is clear, in Equation 19, contributions by clusters of
I or V are neglected. The fβ denote correlation fac-
tors, DSD

β ≡ DβCeq
β contributions to the uncorrelated

self-diffusion coefficient
∑

β=I,V DSD
β , and SF

β and H F
β

entropies and enthalpies of formation, respectively. In-
sertion of Equations 17, 18 and 20 into Equation 19
yields

DT =
∑

β=I,V

DT
β =

∑
β=I,V

fβgβa2
0νβ0 exp

(−GSD
β

/
kT

)

=
∑

β=I,V

DT
β0 exp

(−H SD
β

/
kT

)
(21)

with the preexponential factors

DT
β0 = fβgβa2

0νβ0 exp
(−H SD

β

/
kT

)
(22)
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and the Gibbs free energy of self-diffusion

GSD
β = H SD

β − T SSD
β (23)

the self-diffusion enthalpy

H SD
β = H F

β + H M
β (24)

and the self-diffusion entropy

SSD
β = SF

β + SM
β (25)

The diffusion coefficient Ds of foreign substitutional
atoms in thermal equilibrium may be derived from
Equations 19 or 21 by inserting factor hβ under the
summation signs. These factors account for the inter-
action between the intrinsic thermal equilibrium defects
and the substitutional atoms. They depend on tempera-
ture and the atomic fraction of the substitutional atoms,
unless this is small compared to unity. For more de-
tailed and complete discussion in this field we refer the
reader to reviews by Frank et al. [43](see also [27]).

Compared with metals, self-diffusion in semiconduc-
tors is very slow process. For the elemental semicon-
ductors this is illustrated in Fig. 2, in which the self-
diffusivities of the cubic semiconductors Si and Ge and
of the trigonal semiconductors Te and Se are compared
with those of typical metals such as Cu, Ag, and Au on
a temperature scale normalized to the melting temper-
ature Tm. Fig. 2 reveals the following differences be-
tween metals and semiconductors, already emphasized
by Seeger and Chik [48].

Figure 2 Comparison between the self-diffusivities of the cubic semi-
conductors Ge and Si (Frank et al. [43]), the trigonal semiconductors
Te (Ghoshtagore [45], Werner et al. [46]) and Se (Brätter and Gobrecht
[47]) and the typical metals Cu, Ag, Au (after [43]).

1. Near the melting temperatures the self-diffusion in
semiconductors is several orders of magnitude slower
than in typical metals.

2. At lower normalized temperatures the ratio of
the self-diffusivities of metals and semiconductors be-
comes even larger.

Generally speaking, the origin of these differences
lies in the homopolar bonding of the semiconductors
(details see [43]).

As is well-know, the conventional and well-
established techniques of determining the tracer self-
diffusion coefficient DT based on studying the redistri-
bution of radioactive or stable tracers initially deposited
on the specimen surface of serial sectioning methods.
In the case of radioactive isotopes, the redistribution
may be investigated with radiation detection methods;
for stable isotopes—secondary ion mass spectroscopy
(SIMS) may be used (see also below).

1.4. SIMS-technique
The most complete description of the experimental
technique for study the diffusion processes in solids the
readers may be found in the excellent review by Roth-
man [36]. Here we are briefly discussed the peculiarity
of sputtering and SIMS techniques.

We define microsectioning [49] as the cutting of sec-
tions a few hundreds nm or less in thickness, so that
the surface on which the tracer is deposited, the “front”
surface, is not necessary flat on the scale of

√
Dt , and

so the thickness of the individual sections are not deter-
mined separately. The isoconcentration contours then
follow the contour of the front surface, and one must
remove sections parallel to this nonflat surface, rather
than parallel to a flat surface. If this condition is met and
if the indulations in the front surface are gentle (radius
of curvature ρ � √

Dt), one can treat the sections as if
they were flat (see, however [50]).

Simple chemical dissolution followed by counting
the solution has been used for metals [51], alloys [52],
and silicate glasses [53, 54]. One uses a constant volume
of solvent in the counting vial, rinses the sample so that
the rinse flows into the same vial, and then adjusts the
total volume of solution so that it is the same for all
sections.

In sputtering, material is removed by ion bombard-
ment owing to the transfer of momentum from the bom-
barding ions to the atoms of the targets. A depth profile
can be constructed by (1) analyzing the sputtered-off
material in a mass spectrometer (SIMS), (2) collecting
and analyzing the sputtered-off material, (3) determin-
ing the concentration of the diffusing material in the re-
maining surface by, e.g., Auger electron spectroscopy
(see, e.g. [55–58]), or (4) counting the residual activ-
ity of the entire sample [56]. As a rule, noble gas ions,
especially Ar+, are accelerated to a few hundred eV
or more, with current densities ≤1 mA cm−2. This is
called physical sputtering, in contrast to bombardment
with reactive ions, which is called chemical sputtering.
Typical removal rates are of the order of 10 nm min−1

for 1 mA cm−2 of 500-eV Ar+ ions. There are two
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excellent reviews of the subject of sputtering (Behrish
[60], Chapman [61]), and the reader is referred to these
for an understanding of the process. All equipment for
sputtering includes a vacuum chamber, pumping equip-
ment, and a controlled gas leak such as a micrometer
needle valve. A hohg-speed pumping system is needed
as gas is passed continuously and there are bursts of
desorbed gases to cope with. Cold-trapped diffusion
pumps, cryopumps, or turbopumps have all been used.
All sputtering equipment has a gaseous discharge in it.
Common glow discharges are not suitable, as too high
a gas pressure is required, with resulting low mean-free
paths and back diffusion of the sputtered atoms. There-
fore, either an ion gun an rf power source is used. Two
types of ion sources have been used in sectioning exper-
iments, the custom-modified duoplasmatron of Maier
and Schule (see [43]), and a commercially available
Kauffman-type gun [62, 63]. Almost any ion source
used in ion milling should be usable. The main require-
ment is that the source put out ion currents ≥1 mA cm−2

at ∼1 kV over ∼4 cm2 area in a reasonably uniform
beam (±10% except at the very edge), and that the
current stay constant over period of several hours. The
length of a run is limited by life of the filament. In
addition to the ion source, chamber, pumps, and valv-
ing, one needs a collector and a sample holder. These
are usually custom made. Designs have been given by
Gupta and Tsui [64] and Atkinson and Taylor [65] for rf
systems as well as Mundy and Rothman [60] for ion gun
systems. The collector is either a carousel, with six Al
planchets, which allow six sections to be taken before
the chamber is opened [67], or a device like a cameras
back, on which poleester film is rolled; the latter allows
32 sections to be taken.

In the SIMS technique, the sample is bombarded by
reactive ions, and the sputtered-off molecules are ion-
ized in a plasma and fed into a mass spectrometer. The
mass spectrum is scanned and the ion current for tracer
and host atoms can be recorded simultaneously. The
beam is swept over the sample and, in effect, digs a
crater, the bottom of which is more or less flat; an
aperture prevents ions originating from the edges of
the crater from reaching the mass spectrometer (see
Fig. 3). The penetration plot is constructed from the
plots of istaneous tracer/host atom ratio versus sputter-
ing time and of distance sputtering time. The distance is
obtained by using interferometric measurement of the
total crater depth under the assumption that material is

Figure 3 Schematic diagram of crater caused by sputtering in a SIMS
apparatus (after Dorner et al. [66]).

removed uniformly as a function of time. Large changes
of chemical composition along the diffusion direction
can invalidate that assumption. The limitations of the
SIMS technique have been discussed by Liebl [67] and
Reuter and Baglin [68], and a detailed description of
its application to diffusion has been given by Seran
[69] and Macht and Naundorf [70]. A recent paper [66]
shows the quality of results that can be obtained (see
also [71]). In general, the resolution is no worse than
that obtained by sputtering and counting the sections,
and the sensitivity is no worse than that of counting
techniques. The major disadvantage of SIMS is its cost.
The SIMS apparatus is commercially made (see e.g.
[36] and references therein) but represents a large capi-
tal investiment. Not withstanding the cost of the appara-
tus careful contros must be applied to the measurements
and artifacts [72] must be avoided.

If the entire of the sample is section the depth of
material removed is best determined by weighing on
a microbalance. With care, a sample can be weighed
to ±3 µg, which corresponds to ±150 nm for cross-
sectional area of 0.1 cm2 which is about the minimum
useful area, and a density of 2 g cm−3. For larger areas or
densities, even better sensitivities are obtained, down to
perhaps ±10 nm (details see review [36] and references
therein).

1.5. Self-diffusion of Li and H in LiH crystals
Self-diffusion is the migration of constituent atoms in
materials. This process is mediated by native defects in
solids and thus can be used to study the dynamics and
kinetics of these defects. The knowledge obtained in
these studies is pivotal for the understanding of many
important mass transport processes such as impurity
diffusion in materials. Self-diffusion of D(H ) and Li
in LiH crystals is studied in papers [73, 74] and [75,
76] respectively. As was above shown the gas-solid iso-
tope exchange method has been used for the measure-
ment of self-diffusion coefficients in solids. Two papers
[74, 75] have reported on a thermogravimetric study of
the pressure and temperature dependence of diffusion
coefficient of the deuteride ion in LiH crystals. As is
well-known, in this method a crystal of the compound
of interest is equilibrated in a furnace with a gas usu-
ally containing an isotopic species of the diffusant. The
weight change of the crystal due to the permutation
process from the gas to the solid is then monitored as
a function of time. By assuming that the mass uptake
is due to the isotopic exchange process with deuterium
gas and subsequent diffusion of the deuteride ion into
the crystal and that the rate of the exchange process is
diffusion controlled, the mass gain of the crystal was
calculated from solution of Fick’s law. The best least
squares fit of the data obtained in papers [74, 75] to one-
dimensional and three-dimensional models was used to
find the diffusion coefficients and the activation energy
for the deuteride ion.

According to [74] solution of Fick’s second law [29]

∂C/∂t = ∂2C/∂x2 (26)
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subject to the boundary conditions

C(x, 0) = 0
(27)

C(0, t) = Cs,

where Cs is the surface concentration of the diffusing
species and

lim C(, t) → 0, x → 0

gives, for Q, the total amount of diffusing substance
which has entered the solid at time t ,

Q = 2AsCs(D/π )1/2t1/2 + B (28)

where As is the total surface area of the crystal, D is the
diffusion coefficient, and B a constant that accounts for
the initial condition that Q �= 0 at t = 0. Q is expressed
as the ratio of the number of moles of deuteride ion
diffusing to total moles of LiH contained in the crystal.

Equation 28 may be written as

Q = C ′t1/2 + B, (29)

where C ′ is defined as

C ′ = 2AsCs(D/π )1/2. (30)

With the assumption that the surface coverage Cs can
be written in terms of an adsorption isotherm, θ , C ′ was
rewritten as

C ′ = 0.8748(Asθ/ρV )D1/2, (31)

where ρ is the density of LiH at a given temperature,
V is the volume of the crystal, and the constant in-
cludes the necessary factors for consistency of units.
Rearrangements gives

C = C ′(As/ρV )−1 = 0.8748θ D1/2. (32)

The values for C ′ were found from the fit of Equa-
tion 29 to the data at each temperature (see, Fig. 4). All
fits were exceptionally good (see also Table I). Values
of C calculated from C ′ by using the relation given in
Equation 26 are also given in Table I.

Equation 32 may be written in the form

C = 0.8748θ D1/2
0 e−Ea/2RT (33)

by substituting for D,

D = D0e−Ea/2RT , (34)

where D0 is a constant and Ea the activation energy.
According to Equation 33, the temperature variance

of C is determined by the exponential term involv-
ing temperature and the temperature dependence of the

Q = θ

{
1 −

[ ∞∑
u=0

8

(2u + 1)2 π2
exp

(− (2u + 1)2 π2 Dt

4a2

)]
×

[ ∞∑
v=0

8

(2u + 1)2 π2
exp

(− (2v + 1)2 π2 Dt

4b2

)]

×
{ ∞∑

w=0

8

(2w + 1)2 π2
exp

(− (2w + 1)2 π2 Dt

4c2

)}
+ B

}
, (36)

TABLE I Summary of one-dimensional semi-infinite solid data (after
[75])

Sample C × 104 g cm−2

no. T ◦C C ′ × 103, min−1 min−1/2 Ea, kcal

8 550 4.74 3.96 22.7 ± 2.8a

9 524 4.37 3.49 22 ± 2b

10 500 2.80 2.52
11 450 1.50 1.53
12 410 1.37 0.96
13 399 1.09 0.86

a Ea as found from the best least squares fit of Equation 28 to C with
θ = 0.80. The error reported is the 95% confidence level fit to the data.
b Ea from Ref. [77].

Figure 4 Q as a function of time for data of samples 9, 10 and 13.
The solid curves are the best least squares fit of Equation 29 to the
experimental data (after [75]).

fractional surface coverage θ . If θ is known as a function
of temperature, C may be fit to Equation 33 to give D0
and the activation energy. Lacking knowledge of the
exact variation of θ with temperature, Equation 27 may
be rewritten in the more convenient form

C/θ = 0.8748D1/2
0 e−Ea/2RT (35)

and θ assumed to vary with temperature according to
the expected behavior outlined above. The quantity C/θ

was next calculated using θ = T/(b + T ) and the fit of
the data to Equation 29 found, giving the activation en-
ergy as 22.1 ± 3.0 kcal and D0 as 4.01 × 10−3 cm2 s−1.
The avctivation energy thus found is in good agreement
with the value obtained by Funkee and Richtering [77]
from NMR measurements, 22 ± 2 kcal.

In three-dimensional bulk diffusion model the solu-
tion to Fick’s law [28] for a finite solid has the next
relation
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Figure 5 Temperature dependence of self-diffusion coefficients Li (1,
3) and H (2, 4–6) in LiH single crystals; 1, 2 [76]; 3, 6—[77]; 4,5—[75]
(after [76]).

where the symbols are as previouly defined and 2a, 2b
and 2c are the dimensions of the crystal in the x , y and
z directions. The best fit of the experimental data of
papers [74, 75] gives for the diffusion coefficient as a
function of temperature, D = 2.41 × 10−2e−24.3×103/RT

cm2 s−1. The diffusion coefficient for deuteride ion in
lithium hydride at 465◦C reported in paper [74] to
have been found from three dimensional model was
(1.9 ± 0.6) × 10−9 cm2 s−1 (see also Fig. 5). The dif-
fusion coefficient calculated from Equation 36 was
1.6 × 10−9 cm2 s−1. A comparison of tracer diffusion
coefficients as calculated from one- and three dimen-
sional models is given in Table II, and a plot of − log D
versus 103/T is given in Fig. 6.

The activation energies for various migrating species
have been theoretically calculated by Dellin et al. [78].
They find activation energies for interstitial H− diffu-
sion to lie in the range 11.5 to 23 kcal, while activation
energy for H− vacancy migration is calculated to be
2.3 kcal. From these calculations interstitial H− mi-
gration would seem possible based on the activation
energy of about 24 kcal found by Spencer et al. [75].
However, Dellin et al. [78] in agreement with Pretzel
et al. [79] find that interstitial H− is an unstable species
in LiH and thus could not be the difffusing species.

To the conclusion of this part, we should indicate
once more that the activation energy found by Spencer
et al. [75] ∼24 kcal, is in excellent agreement with
the 22 kcal determined for H− sel-diffusion in LiH by
NMR [77]. This agreement, plus the consistencies of

T ABL E I I Comparison of tracer diffusion coefficients as found from
one- and three-dimensional models (after [75])

Sample
no. T ◦, C 1-Da × 109 cm2 s−1 3-Db × 109 cm2 s−1 3-Dc

8 550 5.8 8.7 0.2 ± 0.1
9 524 3.7 5.3

10 500 2.3 3.4
11 450 0.84 1.1
12 410 0.34 0.41
13 399 0.26 0.31

aCalculated from Equation 28.
bCalculated from Equation 30.
c3-D is the data from [76].

Figure 6 Arrhenius plot of the diffusity of D− in LiH in the temperature
region 400–550◦C for θ = 0.8. The activation energy as determined
from this plot is 24.3 ± 2.6 kcal. (after [75]).

previous work [74], make D− vacancy migration still
the most likely species and mode of migration (see also
[76]).

1.6. Self-diffusion in intrinsic Ge
In intrinsic germanium the temperature dependence
of the tracer self-diffusion coefficient of the radioac-
tive isotope 71Ge has been measured by several groups
[80–85] by means of different techniques (see Fig. 7).
With the exception of the latest experiments, precision
grinding techniques were used to remove sections with
thickness of the order of 1 µm from the diffusion zone
of the annealed specimens. As a consequence, the tem-
perature range covered by the earlier experiments is
rather limited. By means of a sputtering technique for
serial sectioning [84, 85] have been able to extend the
range of self-diffusion studies in Ge to diffusivities as
low as 10−22 m2 s−1.

The overall agreement between Ge self-diffusion
data of different authors is good. In the region of overlap
a small difference between the data of Vogel et al. [84]
and those of the earlier workers may be seen. We tend
to attribute this to problems in determining small diffu-
sion coefficients during the earlier work. Widmer and
Gunther-Mohr [82] used Gruzin’s [86] or Steigmann’s
[87] methods, both of which are known to be less
reliable than the layer-counting method since these
methods require a precise knowledge of the absorp-
tion coefficient of the radiation involved. In the work of
Valenta and Ramasastry [81], the condition δ �

√
DTt

(δ − thickness of the deposited tracer layer) was not al-
ways fulfilled. Since, nevertheless, these authors used
the thin-film solution of the diffusion equation to de-
duce tracer diffusion coefficients, the obtained values
are likely to be somewhat larger than the true DT values.
As may be seen in Fig. 7, the temperature dependence
of the DT data of Ge is well described by an Arrhenius
law (the preexponential factors DT

0 and the self-
diffusion enthalpies H SD obtained from measurements
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Figure 7 Tracer self-diffusion coefficient of Ge as a function of temper-
ature: �—[80]; �—[81]; ◦—[82]; �—[83]; •—[84]; x—[85] (after
[43]).

of different authors are compiled in Table III). Seeger
and Chik [88] argued that this result may be accounted
for in terms of an indirect self-diffusion mechanism
involving one type of intrinsic defect. Guided by fur-
ther observations, they suggest that it is the vacancy
mechanism (details see [43]) that controls self-diffusion
in Ge. Table III shows that the preexponential factor
DT

0 of Ge is considerably larger than the DT
0 values

T ABL E I I I Self-diffusion data for germanium and silicon (after [43])

DT
0 HSD Temperature

Element (104 m2 s−1) (eV) range (K) Technique References

Ge 7.7 2.95 1039–1201 SG [80]
32 3.1 1023–1143 SG [81]
44 3.12 1004–1188 SM + GM [82]
10.8 2.99
24.8 3.14 822–1164 SS [84]
13.6 3.09 808–1177 SS [85]
1.2 × 10−3 3.05 543–690 SIMS [97]

Si 1800 4.77 1473–1673 HL [389]
1200 4.72 1451–1573 CS [90]
9000 5.13 1373–1573 ES [91], [92]
1460 5.02 1320–1660 SS [93]
8 4.1 1173–1373 R [94]
154 4.65 1128–1448 SIMS, 30Si [95]
20 4.4 1103–1473 R [96]

SG = sectioning by grinding; SAM = Steigmann’s method; GM =
Gruzin’s method; SS = sectioning by sputtering; HL = hand lapping;
CS = chemical sectioning, n activation of 30Si; ES = electrochemical
sectioning; R = (p,γ ) resonance of 30Si.

typical for metals (10−6 m2 s−1 � DT
0 � 10−4 m2 s−1)

[43]. Arguing that for an ordinary mechanism the prod-
uct fvgva2

0νv0 in Equation 16 for DT
v0 (≡ DT

0 ) should
be of the same order of magnitude for Ge and metals,
Seeger and Chik [88] interpreted the large DT

0 value of
Ge in terms of a large self-diffusion entropy of the va-
cancy in Ge, SSD

v ≈ 10 k. They suggested that this large
SSD

v value arises from a spreading out of the vacancy
over several atomic volumes.

As we can see from Table III the published value
of fundamental quantities such as the diffusion coeffi-
cient vary by several orders of magnitude for various
authors (see also [43, 88]). Such a spread in the experi-
mental data makes it difficult to determine conclusively
the underlying physical processes. Reliable diffusion
data are therefore crucial to clarify the diffusion mech-
anisms and to accurately determine the corresponding
material parameters. The conventional technique (see,
e.g., Table III) to determine the self-diffusion coeffi-
cient DSD in semiconductors is to deposit thin layer
of radioactive tracer on the surface of the crystal (e.g.,
71Ge, 31Si). In a subsequent annealing step the trac-
ers diffuse into the crystal. The depth profile of the
tracer atoms is then determined by serial sectioning
and measurements of the corresponding radioactivity.
There are several experimental difficulties arising from
this method (see also [97]).

1. Traditionally, lapping and grinding was used for
the serial sectioning. This requires that the mean pen-
etration distance (DSDt)1/2 of the tracer atoms during
the time t of a diffusion anneal has to be in the µm
range. Especially in silicon, the large distance and the
short half-life (2.6 h for 31Si) limit this method to be ap-
plicable only to higher temperatures (larger DSD). Ger-
manium is more convenient in this respect (the half-life
period of 71Ge is 11.2 days), but it was not until micro-
sectioning technique (e.g., sputtering) were invented
that the measurements could be extended to lower tem-
peratures in recent years (see [285]).

2. Surface effects such as oxidation, contamination,
strain, etc. might influence the tracer diffusion substan-
tially (e.g., through the formation of intrinsic defects).

Fuchs et al. [97], recently reported results of a very
accurate method to measure the self-diffusion coeffi-
cient of Ge which circumvents many of the experimen-
tal problems encountered in the conventional methods.
These authors used germanium isotopic heterostruc-
tures (stable isotopes), grown by molecular-beam epi-
taxy (MBE) (details see [98–100]). As is well-known,
isotope heterostructures consist of layers of pure (e.g.,
70Ge, 74Ge) or deliberately mixed isotopes of a chem-
ical element. Fig. 8 shows the schematic of the partic-
ular samples used by Fuchs et al. [97]. At the interface
only the atomic mass is changing, while (to first or-
der) all the other physical properties stay the same. In
the as grown samples, this interface is atomically flat
with layer thickness fluctuations of about two atomic
ML (details see [99]). Upon annealing, the isotopes dif-
fuse into each other (self-diffusion) with a rate which
depends strongly on temperature. The concentration
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Figure 8 Schematic of the isotope heterostructure used by Fuchs et al.
(after [97]).

profiles in paper [97] were measured with SIMS, af-
ter pieces of the same samples have been separately
annealed at different temperatures. This allows an ac-
curate determination of the self-diffusion enthalpy as
well as the corresponding entropy. The isotopic het-
erostructures are unique for the self-diffusion studies
in several aspects (see also [1]).

1. The interdiffusion of germanium isotopes takes
place at the isotopic interface inside the crystal, un-
affected by possible surface effects (e.g., oxidation,
impurities and strain) encountered in the conventional
technique.

2. One sample annealed at one temperature provides
five more or less independent measurements (Ge con-
sists of five stable isotopes). Their initial respective con-
centrations vary for the different layers of the as-grown
isotope heterostructure. After annealing, the concen-
tration profile of each of the five isotopes can be ana-
lyzed separately to obtain five data points for each an-
nealing temperature. The samples were cut into several
pieces. One piece was kept in paper [97] for reference
(as-grown), the were separately annealed at five differ-
ent temperatures (543, 586, 605, 636, and 690◦C). The
temperature controller permitted a variation of the tem-
perature of 1–2◦C. The recording of the concentration
depth profiles of all five stable Ge isotopes was per-
formed with SIMS. The oxygen primary beam had an
impact energy of 8 keV per incident ion. The beam was
rastered over a square area of about 200 µm in size and
the detected secondary ions extracted from the central
30µm diameter region of the crater. The precision of the
SIMS data was estimated to be within ±5%. The depth
resolution of the system was determined from profiles
taken from the as-grown samples with an atomically flat
interface. What theoretically should be a step function
in the concentration profile appeared as a slope of about
4 nm per decade of the measured atomic fraction at the
leading edge of a layer, and about 16 nm per decade at
the falling edge (details see [97]).

As is well-known, diffusion in the crystals occurs
through jumping thermally activated between differ-
ent sites in the lattice [15, 16]. In principle, there are
many possibilities for such jumps (substitutional or

interstitial sites, vacancies, etc. (details see [43])). In
Ge crystals, however, it is known that the only process
of significance for the migration of germanium atoms is
through the vacancy mechanism (see also [88]) In this
case the self-diffusion coefficient DSD can be written
as as Arrhenius expression [97] (see Equation 22)

DSD = g f a2ν0 exp

[−GSD

kT

]

= D0 exp

[−H SD

kT

]
, (37)

wher GSD is the Gibbs free energy of self-diffusion,

GSD = H SD = T SSD, (38)

H SD is the self-diffusion enthalpy, and the preexponem-
ntial factor

D0 = g f a2ν0 exp

[
SSD

k

]
(39)

contains the self-diffusion entropy SSD, the correlation
factor f ( f = 1/2 for the vacancy mechanism in the
diamond lattice [101], the attempt frequency ν0, the
geometric factor g (g = 1/8 for vacancies in Ge and
the lattice constant a, k is Boltzmann’s constant (see
also part 1.3) The enthalpy H SD and the entropy SSD

depend on the formation (subscript F) as well as the
migration (subscript M) of the vacancy:

H SD = H SD
F + H SD

M and SSD = SSD
F + SSD

M . (40)

The quantity which we can extract from the data
of paper [97] is primarily the self-diffusion coefficient
DSD as a function of annealing temperature T . This was
done in citing paper by fitting of experimental depth
profiles to theory, with DSD being the only fitting pa-
rameter. Equation 31 then allows to determine the self-
diffusion enthalpy H SD, and the self-diffusion entropy
SSD is deduced using Equation 40. Solving Fick’s diffu-
sion equation for the specific geometry of samples used
in indicated paper (see Fig. 8), these authors obtain the
atomic fraction ci of a given germanium isotope i in
terms of error functions (erf) (see Equation 36):

ci(x) =
{

c0,I
i − c0,II

i

2
erf

[
h/2 + x

2
√

DSDt

]
+ c0,I

i

}

+
{

c0,II
i − c0,III

i

2
erf

[
h/2 − x

2
√

DSDt

]
+ c0,III

i

}
, (41)

where h is the layer thickness (110 or 200 in Ge sam-
ples, see Fig. 8), and c0,I

i , c0,II
i , and c0,III

i are the initial
concentrations of the isotope i in the enriched 74Ge
layer, in the enriched 70Ge layer, and in the substrate,
respectively. Fig. 9 shows the profiles of all five isotopes
of an annealed sample (586◦C for 55, 55 h), together
with a fit of the data to Equation 41. For clarity only
the fit to the 70Ge profile is shown, but other profiles
can be independently fitted as well. The excellent qual-
ity of the fit over four orders of magnitude displays
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Figure 9 Experimental depth profile of the atomic fraction of 70Ge,
72Ge, 73Ge, 74Ge and 76Ge (symbols) of a diffusion annealed sample
(annealed at 586◦C for 55.55 h). The solid line is a fit of the 70Ge data
of Equation 41. For clarity, only the fit to the 70Ge data is shown (after
[97]).

Figure 10 Experimental depth profiles of the same sample as Fig. 9, but
before annealing (after [97]).

the remarkable accuracy of the method used by Fuchs
et al. As a reference, the corresponding concentration
profiles for as-grown sample are displayed in Fig. 10.
The annealing time was purposefully chosen such that
the plateaus in the annealed samples (around 300 and
100 nm) correspond to the original concentrations in
the isotopically enriched layers.

The values for the self-diffusion coefficient DSD ob-
tained at 543, 586, 605, 636 and 690◦C are presented

Figure 11 Arrhenius plot of the self-diffusion coefficient as a function
of temperature. Data of Fuchs et al. [99] agrees favorably well with the
most recent data ([84, 85]). The older data [80–82] might be less accurate
(after [97]).

in an Arrhenius plot in Fig. 11. The lines in Fig. 11
represent the results of previous authors [43]. The vari-
ation in DSD obtained from different groups is com-
parable with the scatter of the data within the work
of each of the publications. Fitting the experimental
values of DSD to Equation 37 Fuchs et al. obtain the
self-diffusion enthalpy H SD equals 3.0(5) eV. As can
see from Table III this in excellent agreement with pre-
viously published values of 2.95–3.14 eV. The value of
experimental preexponential factor D0 is 1.2 × 10−3 m2

s−1. This compares to previously published values of
(0.78–4.4) ×10−3 m2 s−1. Converting D0 into the self-
diffusion entropy SSD through Equation 39 they obtain
SSD ≈ 9 k (using ν0 = 8 × 1012 s−1 and a = 0.565 nm).
The self-diffusion entropy for Ge is larger than for met-
als (2–4) k. As an explanation, Seeger and Chik [88]
invoked the idea of extended (spread-out) defects, and
Bourgoin and Lanoo [102] have proposed that vacancy
in Ge is strongly relaxed.

Finally, we want to mention the effect of the isotopic
mass on the self-diffusion coefficient (see also [43]).
The many-body treatment of atomic jump processes
leads to an expression for the strength of the isotope
effect in terms of the correlation factor f of Equation 19
and the fraction �K of the kinetic energy which is asso-
ciated with the motion in the jump direction [103, 104].

[ DI

DII

]−1[mII

mI

]1/2−1
= f �K . (42)

In previous Ge self-diffusion experiments, Campbell
[83] found f �K values between 0.26 and 0.30, which
translates into a ratio of D70Ge

SD /D74Ge
SD between 1.007
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and 1.008 [105]. This small difference, however is be-
low the precision of the Fuchs et al. work. When fitting
the experimental depth profilies to Equation 41, they
could indeed not detect any appreciable difference be-
tween the different isotopes. In addition, such small
deviations would be insignificant in the Arrhenius plot
(logarithmic scale of DSD in Fig. 11) for the determina-
tion of the self-diffusion enthalpy H SDand entropy SSD.

1.7. Self- and interdiffusion of Ga and Al
in isotope pure and doped
heterostructures

Self-diffusion is the most fundamental matter trans-
port process in solids. Understanding this process is
pivotal to understanding all diffusion phenomena in
solids, including those for native defects and impuri-
ties. As was noted above, compared to metals [106],
self-diffusion processes in semiconductors are signifi-
cantly more complex (see also [10, 11, 29, 107, 108]).
This is due to the much richer spectrum of native de-
fects and to the much larger effects of small concentra-
tions of defects on the Fermi level position and other
properties [43]. In III–V compounds, experiments are
more difficult to perform because of the high partial
vapor pressure of the group-V elements and the depen-
dence of native defect species and concentrations on
stoichiometry [109].

Over the past thirty years, there have been only a few
attempts to directly study Ga self-diffusion in GaAs
using isotopes [110–112]. Goldstein [110] and Palfrey
et al. [111] diffused radioactive 72Ga into bulk GaAs
at elevated temperatures and obtained depth profiles
of 72Ga by mechanical sectioning and radioactive as-
saying. With a rather limited temperature range inves-
tigated, they reported activation enthalpies of 5.6 and
2.6 eV, respectively. Tan et al. [112] studied the disor-
dering of 69GaAs/71GaAs isotope superlattice structure
and found an activation enthalpy of 4 eV. However,
arguing that the heavily Si-doped substrates in their
samples affected the result, these authors discarded
this value in favor of their earlier estimate of a 6 eV
activation enthalpy [109]. In view of this controversy
and the fact that our knowledge on self-diffusion in
GaAs is primarily derived from studies of interdiffusion
(see also below) of Ga and Al in Gax Al1−x As systems
[113, 115], it is of great interest to study diffusion of
Ga isotopes with some new approaches.

Wang et al. [114] reported results from Ga self-
diffusion studies in GaAs. They measured concentra-
tion profiles of 69Ga and 71Ga using SIMS and deter-
mined the activation enthalpy and entropy by analyzing
the diffusion coefficients obtained between 800 and
1225◦C as well as examined effects of substrate doping.
71GaAs and 69GaAs layers of 200 nm each were grown
using molecular beam epitaxy (MBE) at 580◦C on
GaAs substrates of natural isotope composition (69Ga:
71Ga = 60.2:38.8) The nominal isotope purity in the
epilayers is 99.6%.

Fig. 12 shows the SIMS depth profiles of 69Ga and
71Ga after annealing at T = 974◦C for 3321 s. Excellent
fits over 2.5 orders of magnitude in concentration are

Figure 12 SIMS depth profiles of 69Ga and 71Ga in GaAs isotope epi-
layers annealed at 974◦C for 3321 s. The circles are theoretical fits (after
[114]).

obtained for this and all the other depth profiles taken
from samples with smooth surfaces.

The characteristic diffusion length R is defined as

R = 2
√

Dt, (43)

where D (as usually) is the Ga self-diffusion coefficient
and t is the annealing time. The Ga self-diffusion coeffi-
cient D can be derived from Equation 37. An Arrhenius
plot for D is presented in Fig. 14 (see below). The D
values span 6 orders of magnitude in the temperature
range from 800 to 1225◦C.

Expanding the research on Ga self-diffusion beyond
GaAs to other III–V compound semiconductors can be
quite instructive in elucidateng the microscopic mech-
anism. This was the main reason an investigation [116]
on Ga in gallium phosphide (GaP) using the same SIMS
technique. For the experiment, 71GaP and 69GaP epi-
taxial layers 200 nm thick were grown by solid source
molecular beam epitaxy (MBE) at 700◦C on undoped
GaP substrates. The isotope composition was the same
as in GaAs. Fig. 13 shows the SIMS profiles (solid

Figure 13 SIMS depth profiles of 69Ga and 71Ga in GaP isotope epi-
layers annealed at 1111◦C for 231 min. The filled circles represent the
calculated 69Ga concentration profile (after [116]).
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Figure 14 Arrhenius plots of Ga self-diffusion coefficients in GaAs
(filled circles) and GaP (filled squares) (after [116]).

lines) and the calculated C(x) of 69Ga (circles) and
71Ga (continuous line) in a sample annealed at 1111◦C
for 3 h and 51 min. Excellent agreement is obtained be-
tween the measured and the calculated profiles over two
and a half orders of magnitude in concentration. This
agreement strongly supports the assumptions made in
Equation 12. The fitting procedure leads to an accurate
determination of D through Equation 43.

In Fig. 14, D is plotted versus temperature T . The
D values span over two orders of magnitude in the
temperature range from 1000 to 1190◦C. They can rep-
resented by Equation 17. From this the cited authors
are determined the activation enthalpy H SD and the
preexponential factor D0 to be 4.5 eV and 2.0 cm2 s−1,
respectively. The self-diffusion entropy can be obtained
used the Equation 39. In GaP g ∼ 1, a = 5.45 Å, and
ν0 = 1.2 ×1013 Hz. Using these values Wang et al. [116]
obtained SSD = 4 k. The Ga self-diffusion coefficients
in GaAs from [114] are also shown in Fig. 14 for com-
parison. The activation enthalpy and entropy for GaAs
are 4.24 eV and 7.5 k, respectively.

As in the case of GaAs, the Ga self-diffusion coef-
ficients in GaP follow an Arrhenius relation described
by Equation 37, indicating that a single type of native
defect is most likely responsible for mediating the Ga
self-diffusion in GaP over studied temperature range. In
intrinsic GaAs, the defect mediating Ga self-diffusion
has been ascertained to be the triply negatively charged
gallium vacancy acceptor, V 3−

Ga [109]. Such assign-
ment may still be premature for GaP. From a recent
positron annihilation study in GaP, Krause-Rehberg
et al. [117, 118] reported that positron trapping by va-
cancies behaves similarly in GaP as in GaAs. Vacancies
are detected by these authors only in n-type GaP at room
temperature, with a detection limit of 2 × 1015 cm−3.
These findings neither support nor exclude the possi-
bility that in intrinsic GaP it is also the acceptor-like
VGa that mediates Ga self-diffusion.

Fig. 14 shows that the Ga self-diffusion coefficient in
GaP is about two orders of magnitude lower than that
in GaAs. The decreased cation diffusion in III–V com-
pounds, with phosphorus replacing arsenic as anion,

has been previously observed [117, 118]. Interdiffu-
sion of Ga and Al was determined to be two orders of
magnitude slower in the AlGaInP/GaInP superlattice
system than in the AlGaAs/GaAs system (details see
below). The change has been attributed to the stronger
Ga P bond compared to the Ga As bond [118]. Al-
though Wang et al. [116] measured a higher activation
enthalpy in GaP (4.5 eV) than in GaAs (4.24 eV), the
difference is not large enough to be outside the exper-
imental uncertainty. More reliable is the difference in
the preexponential factor D0, or the entropy term SSD,
between GaP (4 k) and GaAs (7.5 k). As was shown
above, this entropy term is the sum of the formation
entropy SF and migration entropy SM for the native de-
fect mediating the self-diffusion. SF or SM represents
the number of equivalent formation configurations or
migration jumps. The significant difference in SSD in-
dicates profound variations in the way that the medi-
ating native defects are formed or migrate in GaP as
compared to GaAs (see also [1]). The small value of
S supports a simple native defect species as the major
diffusion vehicle (details see [114]).

Bracht et al. [115] were used three undoped iso-
tope heterostructures of Al71

x Ga1−x As/Al69
y Ga1−yAs/

71GaAs with (X , Y ) = (0.41, 0.62) (a); (0.62, 0.85) (b);
and (0.68, 0.88) (c) and in addition an AlAs/71GaAs
(d) layer structures for Ga self- and Al-Ga interdiffu-
sion experiments. The thickness of the layers lie be-
tween 100 and 200 nm. The structure were grown by
MBE at about 600◦C on a 200 nm thick undoped natural
GaAs buffer layer which was deposited on (100) ori-
ented GaAs substrate wafers. A natural GaAs capping
layer, about 200 nm thick, was grown om top of the
structure to protect the AlGaAs layer against oxidation
in air. Concentration profiles of Al, 69Ga, 71Ga, and As
in the annealed samples were measured with SIMS us-
ing a Cs+ ion beam with an energy of 5.5 keV. The depth
of the craters left from the analysis were determined
with a Tencor P-10 surface profilometer. The measured
secondary ion counts were converted into concentra-
tions taking into account the count rates obtained on an
Al0.56Ga0.44As standard.

Concentration profiles of Al, 69Ga, and 71Ga of the
as-grown structure b are shown in Fig. 15a. Fig. 15b il-
lustrates the corresponding distribution after annealing
of sample b at 1050◦C for 1800 s. Concentration profiles
of 69Ga (see also [115]) which lie within the Al71GaAs
and 71GaAs layers, are accurately described by the
solution of Fick’s law (see above) for self-diffusion
across an interface taking into account a concentration-
independent diffusion coefficient. The measured 69Ga
profiles within the 71GaAs layer of samples a to d all
yield the same Ga self-diffusion coefficient within ex-
perimental accuracy even though the Al concentration
in the 71GaAs layer varies from 1018 cm−3 (detection
limit) in e.g., sample d up to 1020 cm−3 in sample b
due to in-diffusion of Al from the adjacent AlGaAs
layer. The temperature dependence of Ga self-diffusion
in Alx Ga1−x As with X = 0, 0.41, 0.62, and 0.68 is
shown in Fig. 16. The activation enthalpy H SD of Ga
self-diffusion in Alx Ga1−x As and the corresponding
preexponential factor D0 are summarizes in Table IV.
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Figure 15 SIMS depth profiles of Al(◦), 69Ga (�), and 71Ga (+) in
the as-grown Al71GaAs/Al69GaAs/71GaAs heterostructure b [see (a)]
and after annealing at 1050◦C for 1800s [see (b)]. Solid lines in (a)
connect the data to guide the eye. Solid lines in (b) show best fits to the
experimental profiles. For clarity, only every fourth data point is plotted
in (a) (b) (after [115]).

Figure 16 Temperature dependence of the diffusion coefficient D of Ga
in Alx Ga1−x As with x = 0 (◦); 0.41 (*); 0.62 (�); 0.68 (�) and 1.0 (•)
and of Al in GaAs (�) (after [115]).

Recently Wang et al. [114] determined an activation
enthalpy of (4.24 ± 0.06) eV for Ga self-diffusion in
GaAs which deviates from the present result of (3.71 ±
0.07) eV. The authors [114] favor the activation en-
thalpy of 3.71 eV for Ga self-diffusion in GaAs, because
simultaneous annealing of the former 69GaAs/71GaAs
heterostructure with sample a has revealed that the Ga
profile near the interface of the 71GaAs layer and the
GaAs substrate, which was considered by Wang et al.
for the self-diffusion study, deviates from the expected
error function solution. This may be caused by surface
contamination of the GaAs substrate wafer. The tem-
perature dependence of Ga self-diffusion in AlGaAs
reveals that Ga diffusion decreases with increasing Al
content whereas H SD appears to be constant within the
experimental error (see Fig. 16 and Table IV).

The Al and Ga profiles near the Al69GaAs/71GaAs
interface result from Al-Ga interdiffusion. The Al-
Ga interdifussion coefficient D̃ can be expressed as

TABLE IV Activation enthalpy HSD and natural logarithm of the
preexponential factor D0 for Al and Ga diffusion in Alx Ga1−x As for
intrinsic and As-rich (pAs ∼ 1 atm) conditions (after [115])

Element X of Alx Ga1−x As HSD ln (D0/cm2 s−1)

Al 0.0 3.50 ± 0.08 −1.77 ± 0.80
Ga 0.0 3.71 ± 0.07 −0.45 ± 0.67
Ga 0.41 3.70 ± 0.21 −1.05 ± 1.98
Ga 0.62 3.60 ± 0.13 −2.51 ± 1.24
Ga 0.68 3.51 ± 0.19 −3.96 ± 1.78
Ga 1.0 3.48 ± 0.23 −4.51 ± 2.16

(see [107])

D̃ = (XAl DGa + XGa DAl)�S, (44)

where XAl and XGa are the mole fractions of Al and
Ga. DGa and DAl represent the Ga and Al diffusion
coefficients in AlAs and GaAs, respectively. � is the
thermodynamic favtor and S the vacancy wind fac-
tor which takes vacancy interaction and correlation ef-
fects into account. For modeling Al-Ga interdiffusion
authors [115] assume the simplest possible values of
� = 1 (ideal solution) and of S = 1. On this basis,
Fick’s second law was solved numerically. The mea-
sured Al and 71Ga profiles shown in Fig. 15b can both
be described with the composition dependent interdif-
fusion coefficient D̃ according to Equation 44 which
takes into account the actual mole fraction of Al and Ga
as a function of depth. According Bracht et al. [115] ,
all interdiffusion profiles of samples a to d, which were
annealed at the same temperature, are accurately de-
scribed with data for DGa and DAl which are consistent
within 40%. The temperature dependence of Al diffu-
sion in GaAs and of Ga diffusion in AlAs is shown in
Fig. 16. Fitting Equation 37 to these results yields data
for H SDand D0 which are listed in Table IV.

The values for H SD shown in Table IV all lie in the
range of (3.6 ± 0.1) eV. Recently Wee et al. [119] re-
ported an activation enthalpy of (3.6 ± 0.2) eV and a
pre-exponential factor of 0.2 cm2 s−1 for interdiffusion
of Al0.2Ga0.8As/GaAs at temperatures between 750 and
1150◦C. Their data are consistent with data of paper
[115] on Ga diffusion in AlGaAs and its dependence
on the Al content. Tan et al. (see [112] and references
therein) have proposed 6 eV for Ga self-diffusion. This
result is based on a compilation of Ga self-diffusion
and Al-Ga interdiffusion data obtained under various
experimental conditions which includes AlGaAs/GaAs
heterostructures with Al contents up to 100%. The acti-
vation enthalpy of 6 eV appears now to be questionable
since Bracht et al. results unambiguously shows that Al-
Ga interdiffusion does not represent Ga self-diffusion.

The single activation enthalpy found for Ga self- and
Al-Ga interdiffusion suggests that the diffusion is medi-
ated by the same native defect. Vacancies on the sublat-
tice of the group-III atoms are assumed to mediate the
Ga self- and Al-Ga interdiffusion under intrinsic con-
ditions [120]. In this case the self-diffusion coefficient
is given by (see also (37))

DSD = fVCeq
V DV = fVga2ν exp

(−GSD
V

/
kT

)
, (45)
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where fV is a correlation factor and Ceq
V and DV

the thermal equilibrium concentration of vacancies
and their diffusivity. Ceq

V DV can be expressed by the
geometry factor g, the jump distance a, the jump
attempt frequency ν, and the Gibbs free energy GSD

V of
self-diffusion via vacancies. ν is proportional to 1/

√
m,

where m represents the atomic mass of the jumping
atom. Different jump frequencies of 27Al and 71Ga
caused by the difference in their masses are proposed
to be the cause for the experimentally observed higher
Al diffusion in GaAs compared to Ga self-diffusion.
The experimentally determined ratio between the Al
and the Ga diffusion coefficient in GaAs is consistent
with (mGa/mAl)0.5. The decreasing Ga diffusivity with
increasing Al content in AlGaAs can be interpreted
with a different location of the intrinsic Fermi energy
level with respect to the vacancy charge transition
state [121]. This causes different thermal equilibrium
concentrations of vacancies in AlGaAs for different
Al compositions.

In the next we follow Bracht et al. papers consider
the experimental ratio between Ga diffusion in GaAs
and AlAs. This equals the ratio between Ceq

V DV for
GaAs and AlAs if the binding energy between Ga and
a vacancy in AlAs is negligible. Assuming only a single
negatively charged vacancy, the total concentration of
vacancies in thermal equilibrium is given by [122]

Ceq
V = Ceq

V0

[
1 + exp

(
E in

F −EV−/0/kT
)]

, (46)

where Ceq
V0 is the equilibrium concentration of a neutral

vacancy, E in
F the Fermi level under intrinsic condition,

and EV−/0 the acceptor energy level of a singly charged
vacancy. The Fermi-level position is given by

E in
F = 0.5Eg + 0.75kT ln(m∗

V/m∗
C), (47)

where Eg is the band gap energy and m∗
V and m∗

C
are the effective density of state masses for holes and
electrons in GaAs and AlAs, respectively [108]. Using
Equations 46 and 47, the ratio between Ceq

V in GaAs
and AlAs is estimated to be 6.5 × exp · [0.077 eV/
(kT)] assuming that Ceq

V0 in GaAs and AlAs are similar
with respect to the valence-band position of AlAs
as energy reference. Bracht et al. obtain a ratio of
12.8 at, e.g., 1050◦C, which is consistent with their
experimental result of 11.1.

Dopant enhanced as well as reduced layer disorder-
ing of semiconductor heterostructures are phenomena
that have been reported frequently in the literature. Su-
perlattice structure doped with Si during growth [123,
124] or by implantation [125, 126] reveal an enhanced
Al-Ga interdiffusion after annealing compared to in-
trinsic conditions. Conversely, Be doping if Si-doped
AlAs/GaAs has been found to suppress the superlattice
disordering when the Be doping level exceeds that of
Si [127, 128]. The dopant induced change in the posi-
tion of the Fermi level, which strongly alters the con-
centrations of charged native point defects and hence
the self- and interdiffusion, is generally considered to
be possible for this diffusion phenomenon [129]. So
far, the relative contributions of the various charged

native point defects to the self- and interdiffusion,
which are required to predict the disordering of GaAs
based superlattice structures for different doping lev-
els, are not accurately known. Total energy calculations
provide one way to determine the nature of native de-
fects in group III–V compound semiconductors. These
calculations predict that the triply negatively charged
vacancy on the gallium sublattice (V 3−

Ga ) is the domi-
nant native defect in GaAs, both for intrinsic and n-type
doping conditions under an As-rich ambient [130]. On
the other hand, the charge state of native defects can be
deduced exp erimentally from the doping dependence
of Ga self-diffusion in GaAs. Generally, Al-Ga interdif-
fusion in AlAs/GaAs superlattices is considered to sim-
ulate the self-diffusion process of the group-III atom.
Tan and Gosele [131] analyzed data of Al-Ga interdif-
fusion in Si doped AlAs/GaAs superlattices [132] and
found, in agreement with the theoretical calculations
of paper [130], that the self-diffusion on the Ga sublat-
tice is mediated by V 3−

Ga . In contrast to these seemingly
consistent theoretical and experimental studies show
that singly negatively charged Ga vacancies V −

Ga medi-
ate the Ga self-diffusion and the Al-Ga interdiffusion
under n-type doping conditions [132, 134]. Some of
the data of Mei et al. [132] , which have been used to
support the triply charged defect hypothesis [131], can
also be described assuming a singly charged vacancy
[134]. Furthermore, Ga self-diffusion in GaAs has been
proposed to be governed by triply charged defects at
high Si doping levels, whereas at low doping concen-
trations a Fermi level independent mechanism was as-
sumed [135, 136]. These discrepancies in the doping
dependence of group-III atom diffusion in the AlGaAs
material system forced Bracht et al. [137] to investigate
with SIMS technique the Ga self-diffusion in undoped,
Si- and Be-doped GaAs by using 71GaAs/natGaAs iso-
tope heterostructures.

Three Al71GaAs/Al69GaAs/71GaAs/natGaAs isotope
heterostructure with different Al content and one
AlAs/71GaAs/nat GaAs structure were used for the dif-
fusion experiments [137]. One set of samples was kept
undoped and another set was doped either with Si or
Be, i.e., altogether 12 different isotope structures were
used. Each of these samples contains a 71GaAs/natGaAs
interface on which was focused on in the present self-
diffusion study.

SIMS measurements on the undoped set of isotope
heterostructures have revealed a change in the SIMS
sputter rate with increasing Al concentration [138].
Since all samples used for the Ga self-diffusion experi-
ments contain AlGaAs layers, a decrease in the sputter
rate with increasing Al content results an apparently
thicker AlGaAs layers and thinner GaAs layers. There-
fore a point by point correction of the penetration depth
of the SIMS profile was performed taking into account
the measured sputter-rate dependence. According to
cited authors the thickness of the AlGaAs and GaAs
layers corrected in this way are consistent within 10%
or better with the thickness determined directly with
transmission electron microscopy.

Concentration profiles of 69Ga near the 71GaAs/
natGaAs interface measured with SIMS after annealing
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Figure 17 SIMS depth profiles of 69Ga, 28Si and 9Be after annealing
of (a) Si-doped and (b) Be doped 71GaAs/natGaAs isotope structures
at various temperatures and times as indicated. The solid lines show
the best fits to experimental data. Ga self-diffusion coefficients deduced
from each profile are listed in the figure. The numbers 1, 2, and 3 at the
top X-axis indicate the position of the 71GaAs/natGaAs interface of the
particular sample. For clarity only the dopant profile (dashed line) from
the Ga profile 3 is shown (after [137]).

of Si- and Be doped samples are shown in Figs 17a,b
and 18. The Si- and Be profiles reveal a nearly constant
dopant concentration across the 71GaAs/natGaAs inter-
face. A few sufficiently large Si-doped samples were
also analyzed with C-V profiling to determine the free
carrier concentration after annealing. The carrier con-
centration profile of one sample is shown in Fig. 18
together with the corresponding SIMS profiles of SI
and Ga. C-V profiling revealed a Si donor concentra-
tion, CSi, of about 2 × 1018 cm−3 along the 69Ga profile.
Similar results were obtained from the analysis of other
samples. The electron concentration n after annealing
is smaller than CSi of the as-grown structures. This de-
crease is also apparent in the observed effect of doping
on Ga self-diffusion. The hole concentration p of Be-
doped samples could not be accurately determined by
C-V profiling after annealing. In all cases the craters
left behind by the electrochemical etching were very
non-uniform. Consequently, no reliable data could be
obtained for p. SIMS analysis shows that the Be con-
centration along the Ga self-diffusion profile equals the
concentration of the as-grown structure. Therefore, it is
assumed that the free carrier concentration p due to Be

Figure 18 SIMS depth profiles of 69Ga and 28Si of a Si doped
71GaAs/natGaAs structure annealed at 800◦C for 2 h. The solid line
shows the best fit to the experimental data which yields the Ga self-
diffusion coefficient listed in the figure. The room temperature electron
concentration, which was measured by C-V profiling, is shown as dashed
line (after [137]).

doping is not significantly affected by the thermal an-
nealing. This is supportted by the doping dependence
of Ga self-diffusion, which is accurately described tak-
ing into account the Be doping level of the as-grown
samples (details see [137]).

Ge self-diffusion profiles shown in Figs 17 and 18
are accurately reproduced by the solution of Fick’s law
for self-diffusion across an interface (see above). All
experimental 69Ga profiles were described on the basis
of Equation 41, in order to take into account the diffu-
sion of 69Ga from the adjacent Al69GaAs layer into the
71GaAs layer. The thickness d = x1 − x2 determined in
this way for the 71GaAs layer is consistent within 10%
with the thickness in the as-grown structure. The un-
certainty results mainly from the accuracy of the crater
depth measurements.

The self-diffusion coefficients DGa extracted from
the analysis of all Ga diffusion profiles in undoped, Si-
and Be-doped isotope samples are listed in Table V.
Each value of DGa is the average of at least four diffu-
sion coefficients where each of them has been deduced
from a different sample. The accuracy given for DGa
represents the standard deviation of all data which be-
long to the same temperature and doping level. The
temperature dependence of DGa for intrinsic, Si- and
Be-doped GaAs is depicted in Fig. 64. Experimental
results [138] for intrinsic conditions are accurately de-
scribed by (see also [115])

DGa = 0.64 exp

(
−3.71 eV

kT

)
cm2 s−1. (48)

Solid lines in Fig. 19 are best fits to the experimental
data which accurately reproduce the temperature de-
pendence of Ga sel-diffusion under the different doping
conditions.

According to Bracht et al. [137], the Ga self-diffusion
coefficient is given by the sum of the transport coeffi-
cients of vacancies in various charge states

DGa = 1

C0

3∑
r=0

frC
eq
V r−

Ga
DV r−

Ga
(49)
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T ABL E V Ga self-diffusion coefficients DGa in undoped, Si- and Be-doped 71GaAs/natGaAs isotope heterostructures. The numbers in parenthesis
represent the number of samples which have been annealed at the particular temperature T and time t . A free electron and hole concentration of both
(3.0 ± 0.5) × 1018 cm−3 was determined by Hall effect measurements for the as-grown Si- and Be-doped samples. ni, E in

F and n/ni represent the
intrinsic carrier concentration [140], the position of the Fermi level under intrinsic conditions [140], and the ratio of the electron concentration in the
doped and undoped samples, respectively (after [137])

T ◦, C t(s) DGa(cm2 s−1) Type of doping ni(cm−3) E in
F (eV) n/na

i

1160 270 (4) (6.12 ± 0.17) × 10−14 Undoped 1.56 × 1018 0.512 1.0
1050 1800 (4) (4.76 ± 0.80) × 10−15 Undoped 7.41 × 1017 0.545 1.0
1050 3600(1); 4800(4) (1.46 ± 0.20) × 10−15 Be-doped 7.41 × 1017 0.545 0.233

955 12600(1); 15120 (3) (3.84 ± 0.61) × 10−16 Undoped 3.54 × 1017 0.572 1.0
955 10800 (1); 86400(4) (8.28 ± 2.50) × 10−17 Be-doped 3.54 × 1017 0.572 0.116
872 260400(4); 432000(2) (2.47 ± 0.17) × 10−17 Undoped 1.70 × 1017 0.595 1.0
872 496800(1); 1814400(4) (2.37 ± 0.59) × 10−18 Be-doped 1.70 × 1017 0.595 0.056
872 1680(5) (3.67 ± 0.93) × 10−15 Si-doped 1.70 × 1017 0.595 14.8
800 1209600(2); 1370700(2) (2.84 ± 0.36) × 10−18 Undoped 8.32 × 1016 0.615 1.0
800 7200(4); 10800(1) (9.86 ± 1.65) × 10−16 Si-doped 8.32 × 1016 0.615 26.6
736 – 1.88 × 10−19(b) Undoped 4.09 × 1016 0.632 1.0
736 25200(1); 30600(4) (1.45 ± 0.21) × 10−16 Si-doped 4.09 × 1016 0.632 45.9

aData correspond to fit #3 (see Table VI).
bCalculated with followed equation DGa = 0.64 exp(− 2.71eV

kB T ) cm2 s−1.

Figure 19 Temperature dependence of the Ga self-diffusion coefficient
DGa in undoped (x), Si-doped (�), and Be-doped (•) GaAs for PAs4 = 1
atm. The influence of doping on DGa is best reproduced (see solid lines) if
the effect of the Fermi level together with a compensation of Si donors by
negatively charged vacancies is taken into account. The long-dashed line
is expected if the compensation by vacancies is ignored. Short-dashed
lines represent the contribution of the doubly positive charged Ga self-
interstitial I2+

Ga to Ga self-diffusion. Lower dashed line: I2+
Ga contribution

for intrinsic conditions and PAs4 = 1 atm; upper dashed line: I2+
Ga con-

tribution calcula ted for a hole concentration of 3 × 1018 cm−3 (after
[137]).

where C0, fr, Ceq
V r−

Ga
represent the Ga atom density in

GaAs (C0 = 2.215 × 1022 cm−3), the diffusion correla-
tion factor, and the thermal equilibrium concentration
and the diffusion coefficient of the vacancy DV r−

Ga
with

the charge r ∈ [0, 1, 2, 3], respectively. The correla-
tion factor contains information about the microscopic
jump mechanism [29]. The different vacancy configu-
rations can introduce energy levels within the energy
band-gap of GaAs. Occupation of these energy states
depends on the position of the Fermi level. Under ex-
trinsic conditions, i.e., when the hole or the electron
concentration introduced by doping exceeds the intrin-
sic carrier concentration, the Fermi level deviates from
its intrinsic position. As a consequence, the ratio of the

charged to neutral vacancy concentrations is changed
[122]. For vacancies which can introduce single (V −

Ga),
double (V 2−

Ga ), and triple (V 3−
Ga ) acceptor states with en-

ergy levels at EV −
Ga

, EV 2−
Ga

, EV 3−
Ga

above the valence band
edge EV, the rations are given by

Ceq
V −

Ga

Ceq
V 0

Ga

= gV −
Ga

exp

(
EF − EV −

Ga

kT

)
(50)

Ceq
V 2−

Ga

Ceq
V 0

Ga

= gV 2−
Ga

exp

( EF − EV 2−
Ga

− EV −
Ga

kT

)
(51)

Ceq
V 3−

Ga

Ceq
V 0

Ga

= gV 3−
Ga

exp

( EF − EV 3−
Ga

− EV 2−
Ga

− EV −
Ga

kT

)
(52)

The thermal equilibrium concentration of the neutral
Ga vacancy Ceq

V 0
Ga

is independent of the position of the
Fermi level EF. However, if EF lies above EV r−

Ga
, the for-

mation of negatively charged vacancies is energetically
favored compared to the formation of neutral defects.
In Equations 49–51 the degeneracy factors gV r−

Ga
, which

take into account a spin degeneracy of the defect and
a degeneracy of the GaAs valence band, have all been
set to one.

The total concentration of VGa in thermal equilib-
rium, CV eq

Ga
, is given by the sum of the corresponding

concentrations of the various charge states of gallium
vacancies

Ceq
VGa

=
3∑

r=0

Ceq
V r−

Ga
= Ceq

V 0
Ga

3∑
r=0

Ceq
V r−

Ga

Ceq
V 0

Ga

. (53)

Based on Equations 49–51 it becomes clear, that Ceq
VGa

changes when the position of the Fermi level changes.
Naturally, the Ga self-diffusion coefficient given by
Equation 49 may be written as

DGa = 1

C0
Ceq

V 0
Ga

3∑
r=0

Ceq
V r−

Ga

Ceq
V 0

Ga

DV r−
Ga

. (54)
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Recent published molecular dynamic calculations
[139] show that the migration enthalpy of a Ga is nearly
independent on its charge state. For accuracy migra-
tion vis second-nearest neighbor hopping, an enthalpy
of 1.7 eV was determined for V 0

Ga compared to 1.9 eV
for V 3−

Ga [139]. In addition, in paper [138] was assumed
that the entropy change associated with the V r−

Ga mi-
gration and the correlation factor fr are similar for all
charge states, i.e., DV r−

Ga
= DVGa and fr ≈ f . With these

assumptions, it follows that [138]

DGa = 1

C0
f Ceq

V 0
Ga

DVGa

3∑
r=0

Ceq
V r−

Ga

Ceq
V 0

Ga

. (55)

Taking into account Equations 50–52, and the well-
known expression

n

ni
= exp

(
EF − E i

F

kT

)
, (56)

the following relationship between the Ga self-
diffusion coefficient under intrinsic and extrinsic con-
ditions have next form

DGa(n)

DGa(ni)
= 1 + ∑3

m=1

(
n
ni

)m
exp

m E i
F−

∑3
m=1 EV m−

Ga

kT

1 + ∑3
m=1 exp

m E i
F−

∑3
m=1 EV m−

Ga

kT

. (57)

In Equations 56 and 57, ni. E i
F, n, and EF define the

free electron concentration and the Fermi level position
under intrinsic and extrinsic conditions, respectively. If
only one charge state r dominates Ga self-diffusion,
Equation 57 is reduced to

DGa(n)

DGa(ni)
=

(
n

ni

)r

(58)

with r ∈ [0, 1, 2, 3]. This simplified relationship has
been generally used to analyze the doping dependence
of Ga self-diffusion and Al-Ga interdiffusion [131].
Bracht et al. [137] prefer more general Equation 57,
since this equation takes into account that the charge
state of the vacancy mediating Ga self-diffusion may
change with doping and temperature.

Fitting of Equation 57 to experimental results re-
quired data for E i

F and ni. For these quantities the
cited authors used the data reported by Blakemore [140]
which are listed in Table V. The electron concentration n
of the Si- and Be-doped GaAs samples were calculated
via the charge balance equation yielding [137]

n = 1

2

(
CSi −

3∑
m=0

mCeq
V m−

Ga

)

+
√√√√n2

i + 1

4

(
CSi −

3∑
m=0

mCeq
V m−

Ga

)
(59)

and

n2
i

n
= p = 1

2

(
CBe −

3∑
m=0

mCeq
V m−

Ga

)

+
√√√√n2

i + 1

4

(
CBe −

3∑
m=0

mCeq
V m−

Ga

)
, (60)

respectively. CSi—represents the Si donor concentra-
tion and CBe—the acceptor concentration due to Be
doping. Both concentrations are equal the free carrier
concentration of 3 × 1018 cm−3, measured at room tem-
perature. Negatively charged vacancies affect the free
carrier concentration are taken into account in both
Equations 59 and 60.

The free carrier concentration given by Equations 58
and 60 also depends via Equations 49–51 and 56 on
the vacancy-related energy levels. Therefore Equations
57, 59 and 60 were solved by Bracht et al. simultane-
ously. Ceq

V m−
Ga

(r ∈ [0, 1, 2, 3]) were calculated with Equa-
tions 44–46 using a thermal equilibrium concentration
of neutral vacancies which is given by [141, 142].

Ceq
V 0

Ga
= C∗ P1/4

As4
T −5/8 exp

(
H f

V 0
Ga

kT

)
, (61)

where C∗ is a preexponential factor and H f
V 0

Ga
the forma-

tion enthalpy of the neutral vacancy. Equa-
tion 55 includes the influence of the As4 vapor phase
on Ceq

V 0
Ga

[141, 142]. So far equilibrium concentrations
of V 0

Ga have been estimated with an uncertainty factor
of at least 10 [141]. In order to accurately describe the
doping dependence of Ga self-diffusion on the basis of
Equation 51, not only EV m−

Ga
(m ∈ [0, 1, 2, 3]) but also

C∗ were used as fit parameters. The formation enthalpy
of neutral vacancies was set to a value of (1.9 ± 0.2) eV.
This value equals the difference between the activation
enthalpy of (3.71 ± 0.07) eV for Ga self-diffusion
and the vacancy migration enthalpy of (1.8 ± 0.2) eV
which was deduced in paper [136] from Al-Ga inter-
diffusion in nonstoichiometric AlAs/GaAs quantum
wells (see also Equation 48). Authors [137] concluded
that H f

V 0
Ga

= (1.9 ± 0.2) eV is believed to be fairly
reliable.

The temperature and doping dependences of Ga self-
diffusion in intrinsic, n-type and p-type GaAs which
were calculated in paper [137] on the basis of the pa-
rameters given under fit #3 in Table VI, are shown by
the solid lines in Fig. 19. The long-dashed line in Fig. 19
displays the temperature dependence of DGa which is
expected if compensation via negatively charged va-
cancies is ignored in the n-type GaAs with CSi =
3 × 1018 cm−3.

A representation of DGa data [137] versus the ratio
n/ni is given in Fig. 20. Solid lines have been calculated
with Equation 57 taking into account the n/ni values
listed in Table V and the results for EV m−

Ga
of fit #3 (see

Table VI). The doping dependence of DGa at 872◦C,
which was calculated on the basis of the theoretical
results for EV m−

Ga
(m ∈ [0, 1, 2, 3]) reported by Baraff
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T ABL E VI Parameter values obtained from fitting Equation 51 to the experimental results. The Ga self-diffusion is best described by neutral,
singly and doubly negatively charged vacancies with relative contributions of the various charge states which change with temperature and doping.
Additionally, a compensation of the Si donor concentration by negatively charged Ga vacancies was taken into account; it becomes especially significant
at low temperatures (after [137])

Fit parametera Fit #1b Fit #2c Fit #3 Fit #4 Fit #5

EV−
Ga

− EV (eV) 0.38 ± 0.11 0.42 ± 0.04 0.42 0.42 0.42

EV2−
Ga

− EV (eV) 0.72 ± 0.19 0.60 ± 0.04 0.60 0.60 0.60

EV3−
Ga

− EV (eV) 1.33 ± 4.33 – – – –

H f

V0
Ga

(eV) 1.9 1.9 1.9 1.7 2.1

C∗(cm−3) 0.293 0.293 162 ± 54 18.6 ± 5.8 1385 ± 487

a EV denotes the valence band edge.
bC∗ and H f

V0
Ga

according to Tan [141].
cV 3−

Ga contribution ignored, C∗ and H f

V0
Ga

according to Tan [141].

Figure 20 Ga self-diffusion coefficients DGa versus the ration n/ni be-
tween the free carrier concentration under extrinsic and intrinsic doping
conditions PAs4 = 1 atm. and different temperatures as indicated. Solid
lines were calcuated via Equation 57 taking into account EVm

Ga
given

by fit #3 of Table XII. The dashed line shows the doping dependence
of DGa for 872◦C which was calculated for EV−

Ga
− EV ≈ 0.20 eV,

EV2−
Ga

− EV ≈ 0.52 eV, and EV3−
Ga

− EV ≈ 0.72 eV according to Baraff

and Schlüter [130] (after [137]).

and Schluter [138], is shown in Fig. 20 as a dashed
line. The strong deviation from data of paper [137]
clearly indicates that in contrast to the theoretical calcu-
lations the triply charged Ga vacancy does not mediate
the Ga self-diffusion under intrinsic and n-type doping
conditions.

As was noted above, Muraki and Horikoshi [135]
have studied, with the help of photoluminescence spec-
troscopy, the Al-Ga interdiffusion of Si- and Be-doped
Al0.34Ga0.66As/GaAs superlattice structures. They have
proposed that Al-Ga interdiffusion is mediated by
singly negatively charged Ga vacancies in both n- and
p-type material. The Al-Ga interdiffusion in these struc-
tures with an Al content of 34 at.% is expected to simu-
late the Ga self-diffusion in GaAs. This is supported by
recent results obtained in paper [115] on the Al compo-
sition dependence of Ga self-diffusion in AlGaAs (see
also above) which show that for Al concentrations of
41 at.% DGa in AlGaAs is only a factor of two smaller
than DGa in GaAs. The interdiffusion coefficients given
by Muraki and Horikoshi for different diffusion tem-
peratures and doping levels are illustrated in Fig. 21 as
a function of the ratio n/ni. A compensation of the Si

Figure 21 Al-Ga interdiffusion coefficient DAl−Ga reported by Muraki
and Horikoshi [135] versus n/ni. Solid lines were calvulated with Equa-
tion 51 taking into account DGa(ni) of Muraki and Horikoshi and results
of Bracht et al. [137] for EV−

Ga
(after [137]).

donors by charged vacancies was also considered by
taking into account the equilibrium concentrations of
vacancies which, consistent with results of paper [137],
were obtained for the particular Si doping levels. Solid
lines shown in Fig. 21 were computed via Equation
51 with DGa (n/ni = 1) of Muraki and Horikoshi and
the results of Bracht et al. [137] for EV m−

Ga
(see also

fit #3, Table VI). No adjustable parameter were used.
The dependence on As4 pressure cancels out because
all diffusion experiments were performed under identi-
cal conditions. The deviation between the experimental
data and the corresponding solid line for 800◦C may
indicate that the Si donor concentration is additionally
reduced by the formation of SiGa—acceptor pairs such
as SiGa–SiAs complexes or other compensation centers.
This is supported by the fact that after annealing Muraki
and Horikoshi have observed broad photoluminescence
signals in the Si-doped samples which they attributed
to deep centers.

Self-diffusion coefficients for 900◦C reported by
Muraki and Horikoshi are displayed in Fig. 22 as a
function of n/ni. The solid line in Fig. 22 was cal-
culated on the basis of the results of Bracht et al.
and accurately describes the Ga self-diffusion data for
n/ni > 1. Small differences (n/ni > 1) between the as-
grown and annealed structures can also be caused by
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Figure 22 Ga self-diffusion coefficient DGa reported by Muraki and
Horikoshi [135] versus n/ni. The data in parenthesis are considered to
be not reliable. The solid line was calculated via Equation 51 taking into
account results of Bracht et al. for EV−

Ga
and a value DGa(ni) which is

a factor of 5 smaller than the corresponding data given by Muraki and
Horikoshi (after [137]).

Figure 23 Al-Ga interdiffusion coefficients DAl-Ga (n) of Mei et al.
[133] normalized by DGa(ni) [115] as a function of n/ni. The solid line
represents the best fit which is reproduced by DAl-Ga (n)/DGa(ni) = 3.4
(n/ni)2.3 (after [137]).

SIMS broadening effects associated with a degradation
of the surface quality during annealing under As-poor
conditions.

Fig. 23 illustrates the ratio between the reduced in-
terdiffusion coefficients DAl-Ga(n, PAs4 = 1 atm) and
DGa(n, PAs4 = 1 atm) as a function of n/ni. In this
double logarithmic representation, the slope of the ex-
perimental data equals the exponent r . The best fit [137]
yields r = 2.3 ± 0.1 showing that V 2−

Ga rather than V 3−
Ga

mediate the Al-Ga interdiffusion in agreement with the
results of Bracht et al. Based on this reanalysis, the V3−

Ga
mediated self- and interdiffusion in n-type GaAs, and
the activation enthalpy of 6 eV for Ga self-diffusion
under intrinsic conditions proposed by Tan and Gosele
[131], are found to be incorrect (details see [137, 143]).

In summary, the doping dependence of group-III
atom diffusion in the AlGaAs material system ([135,
136, 141, 142] and references therein) can be consis-
tently explained with the result presented by Bracht
et al. [137]. Neutral, singly and doubly charged Ga
vacancies all contribute to the self-diffusion in un-
doped, p-type and n-type material with relative con-
tributions which depend on temperature and doping.
The lower power dependence for the doping effects of

self-diffusion in samples containing group-VI donors
is proposed to be caused by the formation of next near-
est neighbor complexes between the dopant and the
vacancy.

Chapter 2. Neutron transmutation doping
2.1. The NTD process—a new reactor

technology
The neutron transmutation doping (NTD) process in-
volves the cooperation of semiconductor materials spe-
cialists, device producers, radiation damage and defect
specialists and reactor personnel. Of all possible in-
teractions among these groups, those with the reactor
community have traditionally been the weakest. Reac-
tor personnel have, therefore, had the greatest learning
curves to overcome. It is to the credit of both the reactor
community and the semiconductor industry that these
difficulties have been overcome so readily in the few
years since 1975 when NTD silicon first appeared on
the market. The transmutation doping process simply
involves irradiation of an undoped semiconductor with
a thermal neutron flux. The major advantages of the
NTD process are illustrated schematically in Fig. 24.
The homogeneity in NTD-Si is a result of a homoge-
neous distribution of silicon isotopes in the target ma-
terial and the long range of neutrons in silicon. Doping
accuracy is a result of careful neutron flux integration.
The material improvements offered by the NTD process
form the basis for semiconductor device improvement
(details see [145]).

As is well-known, research reactor facilities provide
the best source of thermal neutrons for this purpose at
the present time (see e.g. [146–149]). These reactors are
ideally suited for such projects because they have usu-
ally been constructed with sample irradiation as one of
the prime design requirements. Although these reactor

Figure 24 Advantages of NTD process. Histogram of irradiation t arg et
accuracy obtained for commercial sample lot at NURR. Insert is a
schematic representation of spreading resistance traces across a wafer
diameter for conventionally doped and NTD Si (after [144]).
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facilities provide a source of thermal (E ∼ 0.025 eV)
neutrons, this thermal flux is always accompanied by a
fast neutron component which is not useful in providing
doping transmutations, but does produce radiation dam-
age (displacements of atoms from their normal lattice
sites) which must be repaired by annealing, the pro-
cess of heating the irradiated material to temperatures
sufficiently high that the irradiation produced defects
become mobile and can removed.

To understand the process further, we must be con-
cerned with the interactions of neutrons, both thermal
and fast, with the target material to be doped. Because
neutrons are neutral particles, their range of penetration
in most materials is usually very long. They interact
only very weakly with atomic electrons through their
magnetic movements. Being neutral, neutrons see no
Coulombic barrier at the target nuclei and, therefore
even very slow neutrons may reach into the nucleus
without difficulty. In fact, the slower the neutron veloc-
ity, the greater is the time of interaction between the
neutron and the target nucleus. We, therefore, expect
the probability of neutron capture by the target nuclei
to be enhanced at low neutron energies.

This interaction is described in terms of a capture
cross-section, σc, where the number of captures per unit
volume, N , is given by

N = NTσc�, (62)

where NT is the number of target nuclei per unit volume,
σc the capture cross-section and � = φt is the influence
(flux times time) given in n/cm2. Fig. 25 shows the
capture cross-section as a function of neutron energy for

Figure 25 Neutron capture cross-section as a function of neutron energy
for natural silicon (after [144]).

Figure 26 Typical neutron activation analysis (NAA) gamma-ray spectrum to search for trace substances deposited on an air filter after 1 min.
irradiation at MURR (after [152]).

silicon as averaged over all three stable silicon isotopes
[150]. Similar behavior is found individually for each
silicon isotope. It can be seen in Fig. 25 that for low
energies:

σc ∼ E−1/2 ∼ 1/V . (63)

For a given nuclear radius, (1/V ) is proportional to
the interaction time. Therefore, the cross-section repre-
sents a probability of interaction between the nucleus
and neutron.

After neutron capture, the target nucleus differs from
the initial nucleus by the addition of the nucleon and
is a new isotope in an excited state which must relax
by the emission of energy in some form. This emis-
sion is usually in the form of electromagnetic radia-
tion (photons) of high energy usually called gammas
(see e.g. [151] and references therein). The time for
decay of this excess energy by gamma emission can
be very short (prompt gammas) or can take an appre-
ciable time in which case a half-life a factor of two,
can be measured. The gamma emission spectrum is
characteristic of the nuclear energy levels of the trans-
muted target nuclei and can be used as a powerful trace
substance technique called neutron activation analysis
(NAA), to detect quantitavely impurity levels as low as
109 atoms/cm3 [152]. A typical trace substance NAA
gamma spectrum is shown in Fig. 26. Each emission
line is characteristic of a particular nuclear transition
of a particular isotope. The absorption of a neutron and
the emission of gammas is represented by the notation:

AX(n,γ ) A + 1X, (64)

where (n, γ ) represents (absorption, emission), A is
the initial number of nucleons in the target element
X before neutron absorption while A + 1 is the num-
ber after absorption. It is possible for the product iso-
tope A + 1X to be naturally occurring and stable. In
many cases, however, the product isotope is unstable.
Unstable isotopes further decay by various modes in-
volving the emission of electrons (β-decay), protons,
α-particles, K -shell electron capture or internal conver-
sion until a stable isotopic state is reached (details see,
e.g. [153]). These decays produce radioactivity and can
be characterized by their half-lives T1/2. In the case of
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silicon, three stable target isotopes are transformed by
(n, γ ) reactions [154] as follows:

(92.3%) 28Si (n, γ ) 29Si, σc = 0.08 b;

(4.7%) 29Si (n, γ ) 30Si, σc = 0.28 b;

(3.1%) 30Si (n, γ ) 31Si → 31P + β−,

σc = 0.11 b; (T1/2 = 2.62 h). (65)

The relarive abundance of each stable silicon isotope
is shown in parenthesis (see also [151]). The cross-
sections are expressed in barns (1 barn = 10−24 cm2).
The first two reactions produce no dopants and only
redistribute the relative abundances slightly. The third
reaction produces 31P, the desired donor dopant [155],
at a rate of about 3.355 ppb per 1018 nth cm−2 [144].
This production is calculated using (63), the 30Si (NT

∼=
5 × 1022 Si · cm−3 × 0.031).

In addition to the desired phosphorus production re-
action and its relatively short half-life for β− decay, the
reaction

31P (n, γ ) 32P → 32S + β−,

σc = 0.19 b(T1/2 = 14.3 d) (66)

occurs as a secondary undesirable effect. The decay of
32P is the primary source of radioactivity in NTD float
fine Si. Of course, any undesirable trace impurities in
the silicon starting material can lead to abnormally long
half-life activities which may require that material be
held out of production until exempt limits are reached.
These factors have stimulated on the subject of radiation
protection. Once the dopant phosphorus has been added
silicon ingot by transmutation of the 30Si isotope, the
problems remains to make this radiation damaged and
highly disordered material useful from an electronic
device point of view. Several radiation damage mech-
anisms contribute to the displacement of the silicon
atoms from their normal lattice position (details see
below). These are:

1. Fast neutron knock-on displacements,
2. Fission gamma induced damage,
3. Gamma recoil damage,
4. Beta recoil damage,
5. Charged particle knock-on from (n, p); (n, α) etc

reactions (see details [151]).

Estimates can be made of the rate at which Si atom
displacements are produced by these various mecha-
nisms, once a detailed neutron energy spectrum of the
irradiation is known, and these rates compared to the
rate at which phosphorus is produced.

The number of displaced atom per unit volume per
second, ND, is estimated from the equation

dND/dt = NTσφν, (67)

where NT is the number of target atoms per unit volume,
φ is the flux of damaging particles and ν is the number
of displacements per incident damaging particle. The

cross-section for gamma induced displacements in sil-
icon is small while the cross-sections for (n, p); (n, α),
etc., are of the order of millibarns and have thresh-
olds in the MeV range. The fast neutron knock-on dis-
placements can be calculated from the elastic neutron
scattering cross-section once the reactor neutron en-
ergy spectrum is known. Estimates of fission spectra
and graphite moderated fission spectra can be found in
the literature [156].

Even if the fast neutron damage could be completely
eliminated, the recoil damage mechanisms, which are
caused by thermal neutron capture, still would pro-
duce massive numbers of displacements compared to
the number of phosphorus atoms produced. In the case
of gamma recoil, a gamma of energy h̄ω carries a mo-
mentum h̄ω/c which must equal the Si isotope recoil
momentum MV . The recoil energy

ER = 1

2
MV 2 = 1

2

(h̄ω)2

MC2
(68)

is, therefore, departed to the silicon atom of mass M
for each gamma emitted. An average over all possi-
ble silicon isotope gamma emission and cross-sections
yields an average recoil energy of 780 eV [157] which
is significantly higher than the Si displacement energy.
A similar effect is encountered for 31Si β− decay. The
β− carries a momentum

p = 1

c

√
E2

β−(m0c2)2 ≡ MV . (69)

Therefore,

ER = 1

2
MV 2 = 1

2

[
E2

β−(m0c2)2]/(Mc2). (70)

For a β− emitted with an energy of 1.5 MeV, ER =
33.2 eV or roughly twice the displacement threshold.

From the above considerations, a very crude estimate
of the numbers of displacements per phosphorus atom
produced can be made. The results of the estimation
are shown in Table VII. While the absolute numbers
of displacements should not be taken literally, the rela-
tive magnitudes of the amounts of damage produced by
these various mechanisms are probably order of mag-
nitude correct. An inspection of Table VII indicates
that the gamma recoil mechanism is significant relative
to the quantity of phosphorous produced even in highly
moderated reactors. We are led to the inescapable con-
clusion that transmutation doping will always produce
significant amounts of radiation damage which must be

TABLE VII Number of displaced silicon atoms per phosphorus pro-
duced for various damage mechanisms shown for an in-core fission spec-
trum and a graphite moderated spectrum (after [144])

Damage particle/position In core In pool

Fast neutron 4.06 × 106 1.38 × 104

Fission gamma 3.64 × 103 36.4
Gamma recoil 1.29 × 103 1.29 × 103

Beta recoil 2.76 2.76
Total DISP/(P) 4.06 × 106 1.51 × 104
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repaired in some way. These defects introduce defect
levels into the band gap which cause free carrier re-
moval and a reduction in carrier mobility and minority
carrier lifetime (see, e.g. [157]).

The defects produced by neutron irradiation are re-
moved by thermal annealing as discussed previously.
It is at this point in the process where disagreement
as to the best procedure is likely to be the greatest.
The spectrum of possible defect structures and their
energetics is impressively large and incompletely un-
derstood. Therefore, annealing procedures according
Meese [144] will be based on art rather than exact sci-
ence. They will also tend to become proprietary for this
reason.

This is unfortunate since it is precisely in this area
that fundamental knowledge is needed to produce the
best possible product. Although carrier concentration
and mobility recovery are easily obtainable by various
annealing procedures, minority carrier life-time recov-
ery is very elusive at present.

So, neutron transmutation offers both advantages and
disadvantages over conventionally doped silicon (de-
tails see [151]) .

Advantages

1. Precision target doping (= 1% or better).
2. Better axial and radial uniformity.
3. No microresistivity structure.

Disadvantages

1. Irradiation costs.
2. Reduction in minority carrier life-time.
3. Radioactive safeguards considerations.

Figure 27 Typical neutron flux profiles (after [158]).

The steady growth of the NTD-silicon (and oth-
ers NTD-semiconductors) market suggests (see also
below) that the advantages are outweighing the
disadvantages.

2.2. Reactor facilities for transmutation
doping

Irradiation of silicon for the purpose of phosphorus dop-
ing has been carried out in the Harwell (England) re-
search reactors since 1975 [158]. At Harwell silicon is
irradiated in the twin, heavy-water, materials-testing re-
actors DIDO and PLUTO. Both reactors operate contin-
uously throughout the year and each actieves an avail-
ability of greater than 86% of calender time. As the
reactors are D2O moderated and cooled the irradiation
conditions are particularly good for silicon doping. The
ratio of thermal to fast neutrons is in excess of 1000:1,
which minimizes the damage which has to be removed
by annealing. In considering the accuracy which can
be achieved in the neutron doping process it is neces-
sary to consider the neutron flux profiles and gradients.
Fig. 27 shows a typical unperturbed flux profile for an
irradiation position over a length of 50 cm spaced about
the maximum flux value. It will be noted that the maxi-
mum and minimum flux values differ by 8–12% of the
maximum, and the gradient at the lower end is particu-
larly steep. To reduce this variation and to smooth the
profile, flux flatteners or neutron screens, in the form of
stainless steel tubes are fitted to the facility liners with
the result shown as “modified profile” in Fig. 27. As
was shown by Smith, the severe gradient arising from
the 8–12% variation has been reduced to 2–3% and the
overall variation reduced to 5%.
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Figure 28 Resistivity variations (after [158]).

The “modified profile” can now be examined in more
detail, and this is shown in Fig. 28. The profile can be
considered in terms of “resistivity distribution” which
is of interest to the customer and can form the basis for
the technical specification of the product. The “Average
Target Resistivity” or A.T.R. 50 [158] is, as the name
suggests, the average of the resistivity over a length of
50 cm. Achievement of this value is subject to variations
arising from the irradiation timing, the measurement of
the mean flux, and the distribution shape; therefore indi-
cating authors apply a tolerance of ±5% to the A.T.R.50
value. The exact shape of the distribution is also subject
to variations due to disturbances in the reactor such as
control-absorber movements and other irradiations and
experiments; according to [158] tolerances are there-
fore also applied to the “Resistivity Distribution” of
5% maximum greater, and 10% maximum less, than
A.T.R.50.

Researchers of Harwell offer irradiation of volume.
Fig. 29 illustrates this and shows the volume which for
convenience Smith describes as a “batch”. It is cylindri-
cal volume of 90 mm diameter and 500 mm in length.
Although radial gradients are small, crystals are rotated
during irradiation, and a maximum variation of ±1%
on a diameter of 10 cm (4 in.) is guaranteed. In practice,
according to Smith, variations are less than can be mea-
sured within the accuracy of a conventional four-point
probe. The average annual dose is typically 6.5 × 1017n
cm−2, which corresponds to a resistivity of 35 �-cm.
In many of the literature references on the neutron dop-
ing of silicon one finds the statement that “three days,
or at most a week, after irradiation, silicon is save to
transport and to handle”. This is, of course, a relative
statement and it is necessary to define what is meant
by “safe”. In the I.A.E.A. publication “Regulations for
the Safe Transport of Radioactive Materials, 1977” it
states that to qualify as “Exempt” or safe material the

Figure 29 Batch dimensions (after [158]).

following conditions must be met:

1. The radiation level at any point on the external
surface of the package shall not exceed 0. mRem/h;
and

2. The non-fixed radioactive contamination of any
external surface shall not exceed 10−4µCi cm−2. This
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Figure 30 Section and layout of the irradiation of the irradiation facility (after [160]).

level is permissible when averaged over any area of
300 cm2 of any part of the surface.

These are internationally accepted standards for the
transport of packages and Harwell complies them. To
meet this obligation Smith write that each crystal, or
piece, of silicon complies with the following criteria
before certification for dispatch:

1. Radiation is less than 0.1 mRem/h, a factor of 5
less than that necessary for the package according to
I.A.E.A. Regulations. and

2. Contamination is less than 5 × 10−5µCi cm−2, a
factor of 2 less than that necessary for the package.

As a result of the application of these low levels
which we consider to be essential only three days delay
prior to shipment os not always possible [404], partic-
ularly for material irradiated down to low resistivities
(see also [159]).

The tendency of the NTD silicon producers to in-
crease their capacity and the extending range of de-
vices in which NTD silicon is being used, call for spe-
cial reactor irradiation facilities. The JRC heavy water
moderated ESSOR reactor (Ispra, Italy) is described
by Bourdon and Restelli [160]. In this article, atten-
tion has been especialy devoted to obtain an automated
operation of the facility, and to optimize the character-
istics of the irradiation volume. The height of 50 cm,
with respect to a core vertical dimension of 150 cm,
has been selected in order to obtain a minimum axial
spread of the neutron flux (±4%). A thermal neutron
flux of (2.7 ÷ 3) × 1014 n cm−2 s−1 is available at the
irradiation position with a thermal to fast (>100 keV)
neutron flux ratio larger than 400.

The silicon crystals are loaded into a transport unit
which can locate up to 100 ingots 77 mm in diameter
by 500 mm length (Fig. 30). The ingots are loaded
protected by a bored plastic capsule which defines
the irradiation volume indicated above. The capsules
are then loaded into the reactor through a lock between
the transport unit and the channel for transfer from the
air to the heavy water circuit. The heavy water circula-
tion assures efficient cooling of the silicon ingot during
irradiation (the maximum crystal temperature should
not exceed 70◦C) and induces, by use of a suitable
shape of the capsule (see Fig. 31), a slow rotation of the
ingot for minimizing radial dispersion of the neutron
fluency. At the end of the irradiation, determined by
the control system, the capsule is transferred into the
transport unit where it stays for at least 4 days before
being disharged thus providing for decay time between
the irradiation and the extraction time. The plastic ma-
terial for the capsule must be chosen as a function of its
qualities of mechanical behavior, radiation resistance,
heat resistance and low radioactivation. On the basis of
the three first requirements, some commercial plastics
have been selected and samples of each irradiated in
the HFR reactor of Petten (Netherland) or in ESSOR,
in order to choose the best material (see also Fig. 32).
None of the tested materials is completely satisfactory
so that Bourdon and Restelli have foreseen the use of
Noryl 731 for the preparation of capsules to be used
for short irradiation times, and polysterene or PPO for
long irradiation times.

The high thermal to fast neutron flux ratio assures
fewer lattice defects as demonstrated by the fact that
a thermal annealing of 5 min. at 750–800◦C has been
found sufficient to achieve complete recovery of the
final resistivity (see Fig. 33).
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Figure 31 Irradiation capsule (after [160]).

Concluding this paragraph we should remember once
more the advantages offered by the ESSOR reactor.
These advantages are a high thermal neutron flux den-
sity, very uniform and easily controllable over a large
irradiation volume, a good thermal to fast neutron flux
ratio in conjunction with the possibility to irradiate the
capsule immersed in D2O which assures an efficient
cooling of the Si crystal.

The General Electric Test Reactor (GETR)
(Schenectady, U.S.A.) was designed and constructed
to provide large irradiation volumes outside the reactor
pressure vessel in a surrounding water pool. The
thermal neutron flux available for silicon irradiation
apans four decades, 1011 to >1014 nv (see Fig. 34).
The large irradiation volume permits the inclusion
of flux flattening and spectral softening devices if
desired [161]. As is well-known, NTD silicon offers
significant technical advantages over chemically doped
silicon (see also [162]). In particular, NTD silicon
has a more uniform phosphorus concentration across
the radius of an ingot or wafer than chemically doped
material. The uniformity could approach 1% for a

Figure 32 Radioactivation of some plastic materials (after [160]).

Figure 33 Number of carriers (and Hall mobility) versus annealing tem-
perature (isochronal anneals) (after [160]).
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Figure 34 GETR 50 MW neutron flux pool position Z-6 (after [161]).

three inch diameter wafer activated in the 50 MW
GETR. Availability of such uniform NTD silicon
would make it possible to manufacture higher power
density thyristors for high voltage applications (details
see below).

A program of silicon irradiation is being carried out
at the National Bureu of Standards (NBS) (Washington,
DC, U.S.A.) 10 MW, heavy water moderated reactor.
A plan view of the NDBS reactor core showing sev-
eral of the irradiation locations is shown in Fig. 35. A
set of five pneumatic rabbit tubes, useful for irradiating
silicon chips to analyze for impurities or to study irra-
diation damage, provide a range of thermal fluxes from
2 × 1011 n cm−2 s−1 (copper-cadmium ratio of 3400)
to 6 × 1013 (copper-cadmium ratio of 46) [164]. Those
researchers interested in long term silicon doping irradi-
ations can currently use two vertical facilities designed
G2 and G4 [163]. Both facilities are D2O filled and
are completely isolated from the reactor coolant. Since
they are isolated, encapsulation of the silicon is unnec-
essary and only an aluminium hardness is needed to
hold the sample. The G2 tube will accept samples up to
1.6 inches in diameter and has a neutron flux at the core

midplane of 1.1 × 1014 (copper-cadmium ratio of 55)
[163]. A vertical flux profile of this facility is depicted
in Fig. 36. Irradiation of samples in G2 for periods of
one day to six weeks has been done for Oak Ridge
National Laboratory (ORNL). The predicted phospho-
rus doping rate of 7.5 × 1013 atoms cm−3 hr−1 yielded
a concentration in excellent agreement with that mea-
sured by ORNL. The G4 tube is located at the cen-
ter of the reactor core and will accept samples up to
3 inches in diameter. Its neutron flux has roughly the
same shape as that in G2 but is about 28% greater. A
one kilogram silicon sample has been irradiated in G4
to a measured phosphorus concentration of 1.4 × 1017

atoms cm−3 (details see [163]).
The absolute differential neutron-energy spectrum

for the low temperature fast-neutron irradiation facility
in the CP-5 reactor by means of a 20-foil activation tech-
nique was determined by Kirk and Greenwood [165].
Fig. 37 shows a simplified schematic of VT53, the cryo-
genic fast-neutron irradiation facility at CP-5 (a more
detailed description of this equipment see in paper [165]
and references cited therein). The elements silicon,
nickel, niobium, and gold were selected to illustrate
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Figure 35 Plan view of NBSW reactor core and irradiation facilities
(after [163]).

Figure 36 Vertical flux profile of position G2 (after [163]).

the results of these calculations. Table VIII gives the
group distributions (partially collapsed from the orig-
inal, more detailed group structure) of primary recoils
and the total primary recoil cross-sections+ for these
four elements. Also displayed in this table (for gold
only) is an error of one standard deviation for recoils in
each group, based on the covariant error matrix gener-
ated during the neutron spectrum error analysis by the
SANDANL code. To facilitate comparison among the
four elements, Fig. 38 shows the integral distribution
of primary recoils (see also [166]). Using the Robinson

Figure 37 Simplified schematic of the cryogenic fast-neutron facility in
CP-5 (VT53) (after [165]).

analytical approximation [167] to the Linfhard et al.
[168] theory of electronic energy losses, it is also pos-
sible to calculate the damage energy distribution and
spectrum averaged total damage energy cross-sections
[169, 170]. The number of Frenkel defects (interstitial
and vacancy pairs) (see also [157]) produced by a pri-
mary recoil of energy T is generally proportional to
the damage energy available from this recoil, which
is just the total recoil energy, T , minus the electronic
energy losses at this recoil energy. The distribution of
damage energy over the recoil energy groups thus gives
a good indication of how the Frenkel defects are dis-
tributed with primary recoil events. As an example,
Table IX gives the distributions of damage energy in
recoil energy groups and the spectrum averaged dam-
age energy cross-sections for the same four elements
shown in Table IX. Fig. 39 graphically illustrates the
corresponding integral damage energy distributions.

The integrated neutron flux determined by Kirk
and Greenwood (2.2 × 1016 n/m2s ±13%, for En >

0.1 MeV) for the low temperature fast neutron facility
in CP-5 is 70% greater than that determined less accu-
rately early [171]. The amount of 235U burn up in the
fuel cylinder over this period of time is not known with
certainty. However, based on a comparison of resistivity
damage rate measurements in cooper made over a com-
parable period of time [172, 173], the burn-up is about
5% for an 8 year time period. Thus, it is reasonable
to assume that the flux (corrected for burnup) in this
facility has remained constant in time within the uncer-
tainty of the present measurement. It is indeed found
that the major cause of the difference between the flux
measurements is the improvement in accuracy of the
cross-section data on which these flux determinations
are based. Therefore, any use of data from previous ex-
periments in this facility will employ the presently de-
termined neutron spectrum and integrated flux values.
One caution that is perhaps obvious should be noted.
In comparing experimental data from different neutron
irradiation facilities, one must be careful when using
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T ABL E VII I Group distributions of recoils and spectrum averaged
cross-sections in gold, niobium, nickel and silicon irradiated in the VT
53 fast neutron energy spectrum (after [165])

Primary recoil/ Si Ni Nb Au
energy group PRD (%) PRD (%) PRD (%) PRD (%) +/−

0.5 eV ↓ 2.4 4.0 2.6 11.8 1.4
5–10 0.4 1.7 1.2 5.1 0.9

10–20 0.6 2.9 1.9 5.6 1.0
20–50 1.5 6.2 4.3 6.7 0.6
50–100 1.9 6.8 3.9 5.4 0.3

100–200 2.4 8.7 4.9 7.2 0.6
200–400 2.7 10.1 6.1 9.4 0.9
400–600 1.8 8.0 4.7 6.4 0.7
600–800 1.5 6.8 4.1 4.7 0.6
800–1000 1.3 4.4 3.5 3.7 0.6

1–1.5 keV ↓ 2.8 5.4 7.2 6.6 1.4
1.5–2 2.4 3.9 5.5 4.2 1.1

2–3 3.9 5.3 8.4 5.4 1.5
3–5 6.7 5.8 11.5 5.8 1.3
5–7 5.5 3.6 7.2 3.0 0.5
7–10 6.9 3.9 6.7 2.6 0.4

10–20 18.8 5.7 9.0 3.9 0.4
20–40 18.1 3.3 4.7 2.1 0.1
40–60 6.7 1.3 1.5 0.3 0.02
60–80 3.5 0.8 0.6 0.08 0.004

PRD = Primary recoil distributions.
Spectrum averaged cross-sections (barns)
σelastic 2.86 8.82 6.77 9.35 ±12%
σinelastic 0.05 0.12 0.40 0.80 ±9%
σn,2n 0.0001 0.001 0.001 0.002 21%
σn,p 0.002 0.02 0.0001 – –
σn,α 0.001 0.001
σtotal 2.91 8.96 7.17 10.15 ±11%

Figure 38 Integral distributions of primary recoils in Au, Nb, Ni and Si
irradiated in VT53 (after [165]).

integrated flux values that have been determined at dif-
ferent times, since cross-sections have changed with
time (details see [165, 174]).

2.3. Nuclear reaction under influence
of the charged particles

According to the modern concept (see, e.g. [153]), the
nuclear reactions leading to the formation doped impu-
rities, may be proceed under the influence of charged
particles (protons, deutrons, α-particles, etc) and neu-
trons and γ -quantes. In such a case the energy of bom-
bardering on the nuclear particle must be sufficiently
enough for overcoming mutual Coulomb repulsion of
particle and nuclear. And in case of following par-
ticle flying out from excited compound nuclear the
other charged particle should also obtain in compound

TABLE IX Group distributions os damage energy and spectrum av-
eraged damage energy cross-sections (〈σ Td〉) in gold, niobium, nickel,
and silicon irradiated in the VT 53 fast neutron energy spectrum (after
[165])

Primary recoil/ Si Ni Nb Au
energy group DED (%) DED (%) DED (%) DED (%)

0–5 eV ↓ 0.00 0.001 0.001 0.01
5–10 0.0002 0.003 0.002 0.02

10–20 0.0005 0.01 0.006 0.04
20–50 0.003 0.05 0.03 0.11
50–100 0.008 0.1 0.05 0.2

100–200 0.02 0.3 0.14 0.5
200–400 0.04 0.6 0.3 1.2
400–600 0.05 0.8 0.4 1.4
600–800 0.06 1.0 0.5 1.4
800–1000 0.06 0.8 0.6 1.5

1–1.5 keV ↓ 0.2 1.4 1.6 3.6
1.5–2 0.2 1.4 1.7 3.2

2–3 0.5 2.6 3.6 5.7
3–5 1.3 4.3 7.6 9.5
5–7 1.6 4.1 7.1 7.4
7–10 2.8 6.2 9.2 8.9

10–20 12.7 14.7 20.7 22.6
20–40 12.6 10.7 10.9 6.2
60–80 8.9 9.5 6.3 2.0

DED = Damage energy distribution (%)
Spectrum Averaged damage energy cross-sections (keV-barns)
〈σ Td〉 42.8 36.0 33.9 19.5(±8.7%)

Figure 39 Integral damage energy distributions for Au, Nb, Ni and Si
irradiated in VT53 (after [165]).

nuclear the energy sufficient for overcoming this
Coulomb barrier. If rn is a nuclear radii and e is the
electron charge, in such a case the barrier height [151]
has the following relation

Bb = Zx Zae2

rn
� Zx Za

A1/3
MeV (71)

and achieves of 5–10 MeV for light nuclears, 10–
20 MeV for middle nuclears and 20–30 MeV for heavy
nuclears [151, 153].

Historically the first sourced of charged particles (α-
particles) were the radioactive elements of Ra, Rn, Po,
Pu and others, which in result of radioactive decay emit
in 1 s on 1 gr emitter until 1010–1011 α-particles [175]
with energies of 4–8 MeV [153, 175]. The main ques-
tion is how the beam of α-particles passes on its own
energy to the atoms of irradiated material. It is appeared
that owing to Coulomb interaction of the particles with
material the kinetic energy of charged particles is spent
on the ionization and excitation the atoms of irradiated
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substance. The estimations show [153] that the cross-
section of the ionization process (∼10−21 cm2) approx-
imately ∼1000 times more than the cross-section of the
nuclear interaction (∼10−24 cm2). Strictly speaking for
monoenergetic beam of particles R0 (the distance of
particle run) has the meaning of the middle run dis-
tance relatively to which it has the Gauss distribution.
During one act of ionization the particle energy is di-
minished approximately 3.5 eV [153] and probability
of nuclear interaction depends on the particle energy at
the moment of the particle and nuclear collision. The
number of nuclear interactions in thin layer dx at the
depth x from the surface of the target has the form

dν = η(x)Nσ (x)dx � η0 Nσ (x)dx, (72)

where N is concentration of target nucleus, η0 and η

are the particles beam on the surface and in depth x , re-
spectively; σ (x) is the cross-section of interaction. The
full number of interactions in the depth of substance,
the thickness of which is more than R0, is equal

ν = η0 N
∫ R0

0
σ (x)dx = η0 N

∫ E0

0

σ (E)dE∣∣ dE
dx

∣∣ , (73)

where E0 is the start energy of particle. Yield of nuclear
reaction which is determined by the part of particles
undergoes the nuclear interaction.

V (E) = ν

η0
= N

∫ E0

0

σ (E)dE∣∣ dE
dx

∣∣ . (74)

From the last formula, it is followed that the yield of
nuclear reaction at the energy of charged particle E is
determined by the cross-section σ (E) and specific ion-
ization of particle dE/dx . And, vice versa, it is known
the functions dE/dx and dV/dE from (74) allow to
find the cross-section of interaction

σ (E) = 1

N

dV

dE

∣∣∣∣dE

dx

∣∣∣∣. (75)

It is known (see e.g. [153]) that for the charged parti-
cle the magnitude dE/dx is proportional to the square
root of particle charge, concentration of electrons in
substance (ne) and some function of the velocity f (v) ∼
1/v and doesn’t depend on particle mass:

dE

dx
∼ Z2ne f (v). (76)

The dependence dE/dx is permitted to recount the
data on the motion of one concrete particle in concrete
substance on the motion of another particles in another
substances (see also [152]). So far dE/dx = f (E), then
in such a case taking the integral, we can obtain the full
run of particle.

R =
∫ E0

0

dE

f (E)
. (77)

For example, α-particles (Rα,x) in the substance XA
Z

can be defined on the run in air (Rα,air) with an assis-
tance of empirical formula [153]

Rα,x(E) = 0.56Rα,air(E)A1/3, (78)

where Rα,air in cm and relates in the air at the tem-
perature 15◦C and ambient pressure and Rα,x will be
obtained in mg/cm2.

The run of protons is connected with the run of
α-particle of another formula, which works at E ≥
0.5 MeV:

Rp = 1.007Rα(3.972)E − 0.2, (79)

where Rα(3.972) is a run of α particles with the en-
ergy of 3.972. The run of other charged particles with
mass Mx (exclude electron) is connected with the run
of protons in the next relation

Rx(E) = Mx

Mp
Rp

(
Mp

Mx
E

)
. (80)

Owing to the fast retardation of charged particles,
they can dope the layer of small thickness with not
uniformly distribution of doped impurities on the depth.
The possible reactions obtained with charged particles
are described by Smirnov [151], where it was indicated
the half-time decay. To conclusion of this part we should
note that regular experiences in this field at the present
time is absent.

2.4. Nuclear reaction under action
of the γ -rays

The reactions of (γ , n)-, (γ , p)- and (γ , α) belong
to reactions of splitting nuclears irradiated by γ -rays.
These reactions are endoenergetical and have some en-
ergetic threshold. In common case the probability of
(γ , n) reaction is more than the probability of (γ , p)-
and (γ , α) reactions. The energy of γ -rays ∼10 MeV
is called the (γ , n) reactions. At the Eγ ∼100 MeV the
reactions with the creation of several particles (γ , 2n;
γ , pn, etc.) are possible [151]. Inasmuch as the im-
purities can be produced in practically any substances
with the assistance of photonuclear reactions, therefore
they are represent the interest for semiconductor dop-
ing. The main reason of this circumstance is large pen-
etrating capability compared to the charged particles
[151]. This circumstance can guarantee the uniform
doping of the large volume substance for some impurity
atoms. The perspective of this direction at the present
time is also supported by the possibility of receiving
of the γ -quantes with any energy at retarding electron
emission. For that the monoenergetical electrons with
the energy 25–60 MeV received by means of the accel-
erator, is directed on the target from heavy metals (Pb,
Bi, W, U etc.). As a result the retarding electrons create
the continuous spectrum of γ -emission. The maximum
energy of this continuum is equal to the kinetic energy
of electrons Ee and intensity of γ -emission approxi-
mately inversely proportional to the γ -quantes energy
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Figure 40 The spectrum of γ -emission is created under electrons re-
tarding with Ee on the target of the accelerator (after [151]).

(see Fig. 40). The increase of γ -emission use for ir-
radiation Si and other semiconductors has been noted
[176].

2.5. Nuclear reactions under the influence
of neutron

The main hope in the field of nuclear doping of semi-
conductors at the present time is placed on the neutrons
(see also [177]) inasmuch as these particles are neutral
particles and they possess a large penetrating capabil-
ity. Furthermore neutron can interact practically with
all nuclears. At the preset time there are the different
sources of neutrons with different intensity accepted
and approached (see above). The history of techniques
by means of which was received the first neutrons
beams can be found in paper [151]. The main source
of the neutron beam is still nuclear reactors of differ-
ent types (see also above). Typical neutron spectrum
of the research water-water reactor WWR is given in
review [178]. In this spectrum there are the neutrons
with energy 0.01 ≤ E ≤ 107 eV. At the irradiation
of neutron beam the cross-section of compound nu-
clear σx essence depends on the degree of resonance
to intrinsic magnitude of energy levels of compound
nuclear.

For neutrons with the energy En ∼ 10−2 ÷ 104 eV
[178] we can write σ (n, γ ) for cross-section of nuclear
reaction

σ (n, γ ) = σ0(E0/En)1/2 = σ0(v0/v), (81)

where σ0, v0 and E0 are some constants of cross-section
of the nuclear reaction, velocity and neutron energy
taken as a starting point. As is well-known for NTD
thermal neutrons are of greater interest. On this inter-
val there are almost all number of neutrons in the spec-
trum of nuclear reactor which is described by Maxwell
distribution on the velocities:

n(v) = 4√
π

(
Mn

2kT

)3/2

v2 exp(−Mnv
2/2kT ), (82)

where as usually k is the Boltzman constant and T is
temperature.

The average cross-section on the spectrum n(v)
provides

σ̄ =
∫

σ0v0

v
n(v)vdv∫

n(v)vdv
= σ0v0

v̄
, (83)

where v̄ = √
8kT/π Mn is the average magnitude of

velocity. It is conveniently to use the next formula of
more probable velocity of neutrons

vmp =
√

2kT

Mn
= v̄

√
π

2
= v̄/1.228. (84)

This correspond to the maximum of distribution of
n(v). Taking into account that v0 = vmp and σ0 = σmp
and at ambient temperature (T = 293 K) vmp is equal
vmp = 2200 m/s. In such a case we obtain the relation
connected with the middle cross-section (n, γ ) reaction
on the thermal neutron with the magnitude of cross-
section usually measurable on the neutrons with more
probable velocity

σ = σmpvmp

v̄
= σmp

1.128
= σ2200/1.128. (85)

The energetical dependence on the cross-section for
Si can be described by following approximated equa-
tion [179]

σ = σa + σs = σa + σfa(1 − e−2w)

= 0.8√
En + 2.25(1 − eC EnT )

, (86)

where En is the energy of neutrons (MeV), σa is the
cross-section of absorption which is equal 160 × 10−3

b at En = 25 MeV, σs is the cross-section of the scat-
tering, σfa is the cross-section of free atom, which is
equal 2.25 b, e−2w is the Debye-Waller factor; C =
1.439 × 10−5 is the normalized constant of the depen-
dence σ (E) to the magnitude σ = 0.55 b at En =
50 MeV at 300 K. Calculations on the ground of Equa-
tion 80 the energetical dependence on the cross-section
of Si at different temperatures as well as some eksper-
imental data are shown in Fig. 41. As it is seen for

Figure 41 The dependence of the calculated on the formula the cross-
section of the thermal neutrons in polycrystal (1) and monocrystal (2) of
Si at different temperatures (after [151]).
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polycrystals (curve 1) Si the cross-section in thermal
field doesn’t depend on the energy and for monocrys-
tals (curve 2) this dependence is changed according to
the law 1/v and depends on the temperature. The last
fact indicates that the NTD of different semiconductors
and one semiconductor with different impurities can
irradiate at different temperature (details see [151]).

2.6. Influence of the dopants
According to common scheme of the nuclear reactions
the primary products of (n, γ ) reactions present the nu-
clear XA+1

Z per one atomic unit heavier outcome ones.
These can be heavier isotopes of the same or neigh-
bor element of the periodical table. If these isotopes
have in natural mixture isotopes irradiated material and
appear stable ones, in such a case nuclear transforma-
tion leads to the change of the initial concentration of
stable isotopes in the irradiated substance. In such a
case this prices doesn’t create impurities of neighbor
elements of the periodical table. The possibility of the
exchange of electrophysics properties with the assis-
tance of impurities which are created by the method of
nuclear doping at irradiation of neutrons proves for nu-
merous semiconductors (see e.g., Table 2.6 in [151]).
In this way there are different properties of semicon-
ductors to connect with the nature and concentrations
of the predominance impurities after respective anneal-
ing: for example Sn and Te in InSb [180–182], Ge and
Se in GaAs [183–185], In in CdS [186] and phosphorus
in Si [154, 181, 182, 187–190] etc.

For the estimation of the character the distribution of
impurities on the thickness of the doped materials we’ll
outcome from fact that the attenuation of the intensity
of collimated neutron flux by the layer of substance of
the thickness x is confirmed by the well-know law:

I = I0 exp(−Nσ x) = I0 exp(−µx)

= I0 exp(−x/ ll), (87)

where N is the amount of the atoms of the irradiated
material per 1 cm3; ll is the middle length of the absorp-
tion [191] connected with the macroscopical absorption
coefficient of the material µ = Nσ next relation

ll = 1/Nσ = 1/µ, (88)

where ll characterizes also the layer thickness of the
material on which the neutron flux and respectively

T ABL E X The efficiency of the attenuation of the neutrons and γ -rays by the different semiconductor materials (after [151])

SN SN SN GR GR GR

Material Density, ρ( g
cm3 ) Nσ (cm−1) ln (cm) L (cm) µ/ρ( cm2

g ) µ (cm−1) lγ (cm)

Si 2.42 0.008 125.0 22.2 0.024 0.058 17.2
Ge 5.46 0.25 4.0 4.7 0.39 0.213 4.7
GaAs 5.4 0.36 2.8 – 0.039 0.210 4.8
InSb 5.78 7.0 0.14 – 0.052 0.391 3.43
CdS 4.82 115.0 0.01 – 0.045 0.217 4.6
SN = Slow neutrons; GR = for γ -rays with energy E = 20 30 MeV.

the impurities concentration is diminished in e = 2.72
times.

The mentioned above relations are correct, if to as-
sume that the neutron cross-section of scattering is
small compared to the absorption cross-section. In com-
mon case when there are both absorption and scattering
of neutrons it is necessary to use the conclusions of the
common theory of neutron diffusion [191]:

I = I0 exp(−x/L), (89)

where L is the diffusion length.
For the compound semiconductors having some sorts

of atoms, the attenuation of the emission beam can be
considered as additive property of medium. Taking into
account this fact we represent the Equation 81 in the
following form

I = I0 exp

(
−µ

ρ
m

)
. (90)

Here ρ is the density of substance, µ/ρ is the mass
coefficient of the attenuation; m is a mass of substance
with the cross-section 1 cm2 and thickness x . Then for
compound substance we can write

µ/ρ =
∑

i

Ci(µ/ρ)i, (91)

where Ci is the weight concentration of the i-element
of the mixture. Equations 81–85 apply also to the at-
tenuation of the narrow beam of γ -quantes. In this
case the linear coefficient of the attenuation is deter-
mined (see also [175] and references therein) by the
sum of the contributions of photo- and Compton effects,
and also from creation process of electron-positron
pairs, e.g.

1

µ
= N (σph + σc + σp), (92)

where σph, σc and σp are the cross-sections of the ir-
radiated processes of the interaction of γ -quantes with
substance in estimation per one atom. The efficiency of
the neutron absorption and γ -rays absorption of differ-
ent semiconductor materials at one side irradiation is re-
flect in Table X. The magnitude of µ/ρ and respectively
values ln and lγ are calculated using the Equation 85
and the knowledges about the cross-section of neu-
trons [192] and extrapolation data of mass coefficients
of absorption of γ -radiation for some elements. The
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comparison of the data mentioned above in the Table X
shows that for neutrons at increasing absorption ability
from Si to CdS rather sharply decreases in the thickness
of the semiconductor material layer in the boundary of
which the distribution of impurities can be regarded
homogenous. At that in Si the natural doping is inho-
mogeneous caused by the absorption and scattering of
neutrons and has small and for real ingot with diameter
50 mm doesn’t exceed 1% [155] and for crystal with
diameter 80 mm the relation of concentrations in center
(Cmin) and at the end (Cmax) of the ingot is combined

Cmin/Cmax � 0.956 [193] (details see[151]).

2.7. Atomic displacement effects in NTD
Recoil atoms from γ -rays or particle emissions af-
ter thermal neutron capture, and recoil atoms from
elastically and inelastically scattered fast neutrons,
produce atomic displacements in solids [194]. The
relative importance of the displacement damage pro-
duced by thermal and fast neutrons can be estimated
by using isotope concentrations, capture or scattering
cross-sections, and recoil energies. Such an estimate
has been made for silicon and the results are presented
in Table XI. The first three columns list the silicon
isotopes, isotope concentrations, and cross-sections for
thermal neutron capture [194] and for fast neutron scat-
tering [195]. The probability of interaction (product of
isotope concentration and capture or scattering cross-
section) is listed in column 4. The energies available
from silicon recoils for producing atomic displace-
ments are given in column 5. For thermal neutrons,
these energies were obtained from a product of the
probability for thermal neutron capture and the average
recoil energy [194] of 780 eV. Kirk and Greenwood
[165] used 474 eV for the average silicon recoil energy,

Figure 42 Shown in the upper left is a track for a 50 keV Si atom recoiling in Si according to calculation by Van Lint et al. [196]. Upper right is a
displacement cascade for a 10 keV Ge atom recoiling in Ge according to calculations by Yoshida [197], where the open and solid circles represent
interstitials and vacancies, respectively. The lower part of the figure shows the energy deposited per Å for different Si recoil energies Er, according
to the formulations of Brice [198] (after [195]).

TABLE XI Energy available for producing displacement damage in
silicon by neutron transmutation doping (after [195])

Concentration Cross-section Nσ νNσ

Silicon isotope (1022 cm−3) (10−24 cm2) (cm−1) (eV/cm)

a) Thermal Neutron Capture Recoil (Energy into displacement,
ν = 780 eV)

28Si (n, γ )29Si 4.61 0.08 0.0037 2.88
29Si (n, γ )30Si 0.23 0.27 0.00062 0.49
30Si (n, γ )31Si 0.15 0.12 0.00018 3.51
β(1.5 MeV)→ Total 3.51
2.61 hr → 31P

b) Fast Neutron Knock-on Recoil (Average recoil energy of
50 keV assumed, ν = 25 keV)

All 5 3(avg) 0.15 3.8 × 103

but the lower energy only emphasizes further the dom-
inance of the fast neutrons for producing displacement
damage (see also [195]). The details of the damage pro-
duced by recoiling 31Si and 31P atoms may, however,
be important in determining the lattice location of 31P
introduced by NTD. Column 5 of Table XI shows that
the energy available for displacements from an incident
fast neutron is 103 times that from an incident thermal
neutron. Fast neutrons will, therefore, dominate the dis-
placement damage until thermal-to-fast ratios exceed
1000:1 (see also above). Thermal neutron capture cross-
sections for germanium and gallium arsenide [195] are
much larger than those for silicon (see also Table X).
Consequently, displacement damage by thermal neu-
trons relative to fast neutrons is expected to be more
important in these materials than it is in silicon. An
atom recoiling in a host material creates a high-defect
density (cluster of defects) along the recoil track [157].
The upper part of Fig. 42 illustrates clusters formed by
recoil tracks calculated for a 50 keV silicon atom re-
coiling in silicon [196], and for a 10 keV germanium
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atom recoiling in germanium [197]. The track in sili-
con as a side view and the authors [196] emphasize the
high damage density in subclusters expected near the
end of range for each recoiling silicon atom. These sub-
cluster regions are similar to the capture-recoil damage
regions produced by thermal neutron capture. There-
fore, the kind of damage regions produced by thermal
neutrons is included in fast neutron damage. The track
in germanium is an end view where the open circles,
which represent interstitials, are shown to be concen-
trated on the periphery of the track. The lower part of
Fig. 42 shows results of calculating the depth distribu-
tion of displacement damage by averaging over a large
number of tracks for silicon atoms recoiling with en-
ergy Er in silicon [198]. The peak damage density first
increases with Er but then decreases because the dam-
age clusters become more diffuse. Knock-on recoils
in reactor-neutron irradiations have an average Er ≈
50 keV. The areas under the curves give the energy
spent in collision processes, and is ≈ 25 keV for Er =
50 keV. The other half of Er is spent in ionization [198].
Assuming 25 eV/displacement, there is sufficient en-
ergy to produce 1000 displacements.

One of the most graphic early examples of defect
clusters produced by neutron bombardment of semi-
conductors was obtained by Bertolotti et al. [199] us-
ing etched surface replication transmission electron mi-
croscopy (TEM). Fig. 43 is a sketch taken from such
results obtained on 14 MeV neutron irradiated silicon
[200]. Most people would agree that the central region
is probably due to the core of the displacement-damage
clusters. There is less agreement on the interpretation of
the outer zone. Direct TEM mesurement [201, 202] in-
dicate a strained region around the damage core so that
strain-induced differential etching may have caused the
outer zone observed in papers [199, 200]. Model by
Nelson [203] postulates trapping of mobile defects by

Figure 43 Sketch of a region observed on an etched surface of Si fol-
lowing 14 MeV neutron irradiation. Central core (500 Å) is attributed to
recoil damage (after [195]).

damage clusters so that the differential etching may
have caused by ab excess of trapped vacancies or inter-
stitials. However, the interpretation that has been most
extensively used to explain experimental data is due to
Gossick [204] and Crawford and Cleland [205]. In this
model, the outer zone represents a space charge region
surrounding a p-type germanium. The damage cluster
in silicon is nearly intrinsic so that a space charge re-
gion would be found in both n- and p-type silicon. The
space charge model has been used to interpret minority
carrier lifetime data [206], changes in carrier concen-
tration and carrier mobility [207], the light sensitivity
of neutron-produced electrical changes [207], photo-
conductivity [208] and EPR observations on specific
defects in neutron irradiated silicon (see also [182] and
references therein).

Thus calculations of energy deposition into displace-
ment processes show that fast neutrons will dominate
defect production in NTD processing of silicon unless
thermal-to-fast neutron ratios exceed 1000:1. Defect
clusters are produced by silicon-atom recoils from fast
neutron collisions. Using an experimental value for the
energy needed per unit volume to form amorphous ma-
terial, it is argued in paper [195] that amorphous zone
formation in silicon NTD is highly unlikely.

2.8. Experimental results
2.8.1. Ge
As was noted above, neutron transmutation (NT) is es-
pecially intriguing for semiconductors for several rea-
sons. First, the NT process can create new elements
removed by just one atomic number. Considering for
the moment the elemental group-IV semiconductors
Ge and Si, this means that the donors As and P will
be created, respectively, following neutron capture and
β-decay of isotopes of these semiconductor elements.
The new elements are, of course, the prototypi-
cal donors. Neutron capture leads to NTD. Second,
the number of new atoms A+1

Z+1N created is simply (see
also 2.1)

A+1
Z N = nσn

A
Z N, (93)

where n being the total neutron fluency (cm−2), σn the
cross-section for thermal neutron capture (cm2), and
A
Z N the atom concentration of the specific isotope in the
given isotope mixture (cm−3) (either natural or man
made). Considering that the values of σn lie in the
10−23 ÷ 10−24 cm−2 range (see above), it recognizes
that very large neutron fluences are required to trans-
mute a significant number of atoms of one element into
another. Whereas this may pose problems to fulfill the
medieval alchemist’s dream, it is just perfectly suited
for the person who wants to dope semiconductors. With
the thermal neutron fluences available in modern nu-
clear reactor (see also 2.2) one can dope Ge up to the
metal-insulator (MI) transition (2 to 3 × 1017 cm−3)
while Si can be doped with phosphorus to several times
1015 cm−3 [182]. As will be shown below this is due
to the small atom concentration of 30

14Si and the mod-
est value of the thermal capture cross-section. Third,
there are elements which have light isotopes which
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Figure 44 The dependence of the phosphorus atoms concentration on
the neutron irradiation doze of Si crystals and followed annealing at
800◦C during 1 h. The dependence was measured by Hall effect (after
[215]).

upon neutron capture transmute to a lower Z element
either by electron capture or by positron decay. In this
case acceptors are created. A classical case is the trans-
mutation of 70

32Ge into 71
31Ga.

The main advantage of the NTD method, as we know
at present, is the precision doping which is connected
with the linear dependence of concentration of doping
impurities on the doze of neutron irradiation. Such de-
pendence is numerous observed in the different experi-
ments (see, e.g. [209–214]). As an example, in Fig. 44
there is shown the dependence of the concentrations
doped phosphorus on the doze of irradiation the Si crys-

Figure 45 The dependence of the concentration of free electrons in 74Ge
NTD on the irradiation of the thermal neutron doze and followed anneal-
ing at 460◦C during 24 (1), 50 (2) and 100 (3) hs. (after [216]).

TABL E XII Characteristics of the transmutation process of germanium (after [209])

Isotope Abundance (%) NCCS (barn) NCDR Dopant type

70
32Ge 20.5 3.4; 3.2; 3.25 70

32Ge(n, γ ) → 71
32Ge →71

31Ga p
72
32Ge 27.4 0.98; 1.0; 1.0 72

32Ge(n, γ ) → 73
32Ge

73
32Ge 7.8 14.0; 14.0; 15.0 73

32Ge(n, γ ) → 74
32Ge

74
32Ge 36.5 0.62; 0.5; 0.52 74

32Ge(n, γ ) → 75
32Ge → 75

33As n
76
32Ge 7.8 0.36; 0.2; 0.16 76

32Ge(n, γ ) → 77
32Ge → 77

33As →75
34Se n

NCCS = Neutron capture cros-sections.
NCDR = Neutron capture and decay reactions.

tal in nuclear reactor. This dependence was measured
with the help of Hall effect [198]. However, at the large
doze of neutron irradiation there is observed the non-
linear dependence. On Fig. 45 is shown the results of
paper [216] where was observed the deviation from lin-
ear law at the large doze of neutron irradiation of the
sample of 74Ge which was annealed after irradiation at
T = 460◦C during different time (see also caption of
Fig. 45). More amazing effect was observed at the sec-
ond irradiation of the samples of 74Ge previously strong
doped with As by NTD method. Instead expectable in-
crease of the concentration free charges (electrons) n
there is observed the decrease n. This decrease was
direct proportional to the neutron irradiation doze of
74Ge crystals. Both effects are rather details analyzed
in papers [213, 216].

The transmutation of the stable germanium isotopes
via capture of thermal neutrons is well understood.
Table XII contains all the information relevant to NTD
of germanium. In paper of Haller et al. [209] quoted
the values of the thermal neutron capture cross-section
σn of three sources [181, 190, 217]. The information
of Table XII permits the computation of the acceptor
and donor concentrations for a known neutron expo-
sure. Not only are these concentrations important but
the ratio of the sum of all minority dopants (donors)
and the sum of all majority dopants (acceptors) i.e.,
the compensation K , is crucial for the low temperature
conduction. For the case of germanium, one obtains K
from the following equation (see also [209])

K =
( ∑

donors · cm−3
)/(∑

acceptors · cm3
)

= (NAs + NSe)/NGa. (94)

The substitutional selenium impurities are dou-
ble donors providing two electrons for compensa-
tion. Therefore they are counted twice in the sum of
donors. Using the different values for σn, one finds
K ranging from 0.322 to 0.405 for crystals with neg-
ligible initial donor and acceptor concentrations. It
would be of great help for both the basic under-
standing of the hopping conduction [218] as well as
for application of neutron-transmutation-doped germa-
nium as, for example, bolometer material [209], if
these cross-sections could be accurately evaluated in
one or more well characterized nuclear reactors (see
above).

In order to obtain the above K values and thus take
full advantage of NTD, Haller et al. choose the purest
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available Ge crystals as a starting material. Germanium
is, in this respect, ideally suited for NTD because it
can be purified at present time down to concentrations
of �1011 cm−3 (see e.g. [219]). Such low concentra-
tions are negligible when compared with the dopant
concentrations after NTD in the low 1016 cm−3 range.
According to Haller et al. [209] the concentrations od
electrically inactive impurities such as hydrogen, car-
bon, oxygen and silicon can be as high as 1014 cm−3.
Of all the isotopes of these impurities only 30

14Si trans-
mutes to an electrically active impurity, phosphorus,
a shallow donor. With only one silicon atom in ev-
ery 4.4 × 108 germanium atoms and only 3% os all
silicon atoms being 30

14Si which has a neutron capture
cross-section much smaller than the germanium isotope
cross-sections, Haller et al. can estimate that less than
one phosphorus donor is produced for every 1011 gal-
lium majority acceptors during the NTD process. These
authors concluded that ultra-pure germanium crystals
are virtually perfect starting material. For the NTD
study, they have chosen an ultra-pure germanium sin-
gle crystal which they have grown at the crystal growth
facility described early (see also [209, 219] and refer-
ences therein).

The measured resistivities (ρ) in paper [209] are pre-
sented in Fig. 46. The results of these measurements

Figure 46 Resistivity as a function of 1000/T for NTD and uncompensated germanium samples. Each curve is labeled by the gallium concentration
obtained by either NTD or melt doping (after [209]).

yield the mobility µ:

ρ = (pµe)−1,

RH = (pe)−1

(95)
µ = RH/ρ,

where p is free hole concentration, e is charge of
the electron and RH is the magnitude from Hall
measurement.

The mobility values are only useful down to the
temperature where hopping conduction sets in. The
mobility values agree well with published values for
melt-doped material in the temperature range above the
hopping regime. This indicates that the concentration of
residual radiation damage or other free-carrier scatter-
ing centers must be very small. Fig. 46 shows the log
(resistivity) versus 1000/T dependence for six NTD
germanium samples. The number next to each curve
corresponds to the acceptor (gallium) concentration in
each sample. For comparison Haller et al. have also
measured gallium-doped germanium samples which
have extremely small values of K . These so-called un-
compensated samples were cut from crystals which
were doped in the melt and were grown in the ultra-
pure germanium crystal-growing equipment, and not
NTD doped. The compensating donor concentration
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in these crystals is estimated to be less than 1011 to
1012 cm−3. The resulting K is of the order of 10−4 to
10−5. The resistivity-temperature dependence of these
NTD samples is characterized by three regimes. At high
temperatures (room temperature down to about 50 K),
the resistivity decreases because the carrier mobility
increases. Below about 50 K carrier freeze out begins
and reduces the free hole concentration rapidly. The
slope of the freeze out in highly-compensated material
os proportional to the acceptor binding energy EA −
EV � 11 meV. At still lower temperatures, the appear-
ance of hopping conduction causes the resistivity to in-
crease only very slowly. All six NTD germanium sam-
ples show these three resistivity regimes very clearly.
The low-compensated samples show different log(ρ)
versus 1/T dependences. A third conduction mecha-
nism has been proposed for such material [220]. It is
based on the idea that carriers can “hop” from neutral
to a neighboring neutral acceptor thereby forming a
positively charged acceptor. The NTD process in high-
purity germanium leads to a fixed compensation which
in turn results in a certain slope of the log(ρ) versus
1/T dependence for a given neutron exposure.

2.8.1.1. Metal-insulator transition. In next part of this
paragraph let us briefly discussed the metal-insulator
transition (MIT) [210, 218, 221, 222] in transmuted
Ge. In the literature there is an intensive debate whether
MIT is a phase transition of first or second order and
what are the experimental conditions to obtain it at finite
temperatures and in real (disordered) system (see, e.g.
[211, 212, 214, 223]). If the MIT is as second order
phase transition a further challenge is the solution of the
so called puzzle of the critical index, µ for the scaling
behavior of the metallic conductivity near the MIT, i.e.,
just above the critical impurity concentration Nc and
as small compensation, K . According to the scaling
theory of the MIT for doped semiconductors [222], the
conductivity at zero temperature σ (0) = σ (T → 0),
when plotted as a function of impurity concentration
N , is equal to zero on the insulating side of the MIT
and remains finite on the metallic side, obeying a power
law in the vicinity of the transition,

σ (0) ∝ [(N/N c) − 1]µ, (96)

where Nc is the critical impurity concentration of the
given system and µ is the critical conductivity expo-
nent. The value of µ, determined experimentally, is
compared with theoretical predictions. Up to present
time µ ≈ 0.5 has been obtained with nominally un-
compensated semiconductors (Si:P [224], Si:As [225,
226], Ge:As [227], Si:B [228]) while µ ≈ 1 has been
found with compensated semiconductors (Ge:Sb [229],
Si:P,B [230], Ge:Ga, As [231]) and amorphous al-
loys [232–234]. Exceptions are uncompensated Ge:Sb
with µ ≈ 1 [210] and Gax Ar1−x amorphous alloys
with µ ≈ 0.5 [235, 236]. As was shown in [211] the
valueµ≈0.5 obtained with simple systems like uncom-
pensated semiconductors turns out to be inconsistent
with theoretical prediction [221, 222, 234]. In his orig-
inal theory Mott considered only the electron-electron

(e−–e−) interaction (Mott transition) and predicted a
discontinuous transition of σ (0) at Nc [237]. Although
there is much evidence for the importance of e−–e−-
interactions, no experimental observation of such an
abrupt transition has been reported. Anderson’s ides of
MIT is based solely on the disordered potential arising
from randomly distributed dopants (Anderson transi-
tion) [238]. This lead to the development of the well-
known “scaling theory” which predicted µ ≈ 1 for
three dimensional systems (see also [222] and refer-
ences therein). More recently, higher order calculations
of the scaling theory (exclusively with disorder and no
interactions) predict µ ≈ 1.3 [239], and more impor-
tantly, this value is shown to be independent of time
reversal invariance [240] and of strength of spin-orbit
interactions [241] (see also [212]). It is therefore clear
that the effect of disorder alone cannot explain the ex-
perimental results of µ ≈ 0.5 or 1. Chayes et al. com-
bined the theories of Mott and Anderson and success-
fully set the lowest limit µ > 2/3 [242]. This result
permits µ ≈ 1 obtained with compensated semicon-
ductors and amorphous alloys. However, there still is
no theory which convincingly explain µ ≈ 0.5 found
for uncompensated semiconductors.

Even with today’s advanced semiconductor technol-
ogy, melt-doping of bulk semiconductors always leads
to inhomogeneous dopant distributions due to impurity
segregation and striation during crystal growth [223].
In papers [211, 223] this difficulties have overcome by
applying the NTD technique to a chemically pure, iso-
topically enriched 70Ge [211] and 74Ge [223] crystals.
The 70Ge crystal of isotopic composition [70Ge] = 96.2
at.% and [72Ge] = 3.8 at.% was grown in paper [211]
using the Czochralski method developed for ultra-pure
Ge [219]. The as-grown crystal was free of dislocations,
p-type with an electrically active net-impurity concen-
tration less than 5 × 1011 cm−3. In paper [223] was used
isotopically engineered germanium which was grown
from pure 74Ge, enriched up to 94%, or by addition of
a controlled portion of Ge with natural isotopic content
to the 74Ge material. In this way both, the doping as
well as the compensation, are very homogeneous due
to the NTD and the compensation by controlled mix-
tures of 74Ge and 70Ge which transmute to 75As donors
and 71Ga acceptors. Four series of n-type NTD-Ge with
different K were grown [223]. The values of K are pro-
portional to the product of the isotopic abundance and
the thermal neutron cross-section of all isotopes pro-
ducing impurities (see above): K = NGa/(NAs + NSe),
whereas the impurity concentration is additionally pro-
portional to the irradiation doze. A very small fraction
of 72Ge becomes 73Ge which is stable, i.e., no other
acceptors or donors are introduced. Use NTD since
it is known [145, 243] to produce the most homoge-
neous, perfectly random dopant distribution down to
the atomic level. Fig. 47 shows the temperature depen-
dence of the resistivities (ρ) of 14 insulating samples in
the range N = 0.16–0.99Nc for NTD 70Ge:Ga crystals.
The analogous picture for NTD 74Ge:Ga is shown in
Fig. 48. All curves become linear only when lnρ is plot-
ted against T −1/2 in good agreement with theory of vari-
able range hopping conduction for strongly interacting
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Figure 47 The logarithm of the resistivity plotted as a function of T −1/2

for 14 insulating NTD 70Ge:Ga samples. Gallium concentration from top
to bottom in units 1016 cm−3 are 3.02; 8.00; 9.36; 14.50; 17.17; 17.52;
17.61; 17.68; 17.70; 17.79; 17.96; 18.05; 18.23 and 18.40 (after [211]).

Figure 48 Typical temperature dependences of the resistivity as a func-
tion of T −1/2 for four samples NTD 70Ge:Ga crystals (after [223]).

electrons [218]:

ρ = ρ0 exp(T0/T )1/2, (97)

where ρ0 is a prefactor and T0 is given by

T0 ≈ 2.8e2/k(N )ξ (N ), (98)

where k(N ) and ξ (N ) are the dielectric constant
and localization length depending on N , respec-
tively. Moreover, k(N ) ∝ [Nc/(Nc−N )]s and ξ (N ) ∝
[Nc/(Nc−N )]ζ as N approaches Nc from the insulating
side so that T0 becomes [218]

T0 = A[(Nc−N )Nc]α. (99)

Here α = s + ζ is to be determined experimentally
[211].

Fig. 49 shows the dependence of T0 as function of
Nd = n/(1 − K ) for different K of 74Ge:Ga [223]. As
early these authors used the intersection point of these
dependencies with the x-axis as a tool for the detrmina-
tion of Nc(K ). The left half of Fig. 50 shows the exper-
imentally determined T0 versus [Ga] (filled diamonds)

Figure 49 Determination of Nc from the extrapolation T0 → 0 in the
range T0 > T (after [223]).

Figure 50 The left side shows (70Ge) as a function of Ga concentration
(♦). The solid curve is the best fit obtained with Equation 99 (with
α ≈ 1). The right side shows the zero temperature conductivity σ (◦)
obtained from the extrapolation in Fig. 51 for the metallic samples as a
function of Ga concentration (•). The solid curve is the best fit obtained
with Equation 99 (after [211]).

together with the result of a three-parameter-fitting us-
ing A, Nc and α as variables in Equation 99 (solid curve)
[211]. These authors deduced [Ga] for sample using fol-
lowing equation [71Ga](cm−3) = 0.1155 × n (cm−2),
since it was known the precise neutron fluency used in
each irradiation. The best fit of T0 with Equation 99 was
obtained with the values α = 1.03 ± 0.038 and Nc =
(1.855 ± 0.012) × 1017 cm−3. A much larger value of
α ≈ 2 has been reported for Ge:As using only three
samples with the highest N being far from the transi-
tion 0.56Nc) [244]. In paper [211], it has been obtained
α = 1 with 14 homogeneously doped samples of [Ga] =
0.16–0.99Nc, all demonstrating the lhρ ∝ T −1/2 depen-
dence, i.e., this data set should be considered to be the
first reliable determination of the hoping conductivity
exponent α for a particular semiconductor system.

Fig. 51 shows the conductivity σ according to the
results of paper [211] in ten metallic samples plotted
against T 1/2. Extrapolation of each curve to T = 0 K,
i.e., the determination of the zero temperature conduc-
tivity σ (0), yields a very small error since the depen-
dence of σ on T for all samples is very weak. The right
half of Fig. 50 shows σ (0) as a function of [Ga] (filled
circles) together with a fit obtained by the scaling ex-
pression Equation 99 (solid curve). The values of the
parameters determined in paper [211] from this fit are

3380



Figure 51 Conductivity plotted as a function of T 1/2 for 10 metallic
NTD 70Ge:Ga samples. Sold lines indicate extrapolation to T = 0 K.
Gallium concentration from top to bottom in units of 1016 cm−3 are
18.61; 19.33; 20.04; 20.76; 21.47; 22.19; 22.90; 23.62; 24.50 and 26.25
(after [211]).

µ = 0.502 ± 0.025 and Nc = (1.856 ± 0.003) × 1017

cm−3. This value present µ ≈ 0.5 for uncompensated
Ge:Ga semiconductors with high confidence, since the
two values of Nc obtained from the scaling of T0 [Equa-
tion 99] and σ (0) [Equation 96] agree perfectly (details
see also [214, 223]).

2.8.1.2. Neutral-impurities scattering. The low-
temperature mobility of free carriers in semiconductors
is mainly determined by ionized- and neutral-impurity
scattering. The ionized-impurity scattering mechanism
has been extensively studied (see e.g. [245] and
references therein), and various aspects of this process
are now quite well understood. Scattering by neutral
impurities (see also [177]) is much less than by
ionized centers, i.e., its contribution is significant
only in crystals with low compensation and at very
low temperatures where most of the free carriers are
frozen on the impurity sites. The availability of highly
enriched isotopes of Ge which can be purified to
residual dopant levels <1012 cm−3 has provided the
first opportunity to measure neutral impurity scattering
over a wide temperature range. Three Ge isotopes
transmute into shallow acceptors (Ga), shallow donors
(As) and double donors (Se) (see also above):

70
32Ge + n → 71

32GeEC(t1/2=11.2 days) → 71
32Ga + νe,

74
32Ge + n → 75

32Geβ−(t1/2=82.2 min) → 75
32As + β− + ν̄e,

76
32Ge + n → 77

32Geβ−(t1/2=11.3 h) → β− + ν̄e

+ 77
32Asβ−(t1/2=38.8 h) → 77

32Se + β− + ν̄e. (100)

The isotopes 72Ge and 73Ge are transmuted into the
stable 73 Ge and 74Ge respectively. Controlling the ra-
tio of 70Ge and 74 Ge in bulk Ge crystals allows fine
tuning of the majority- as well as the minority carrier

TABLE XII I Carrier concentration of the Ge crystals used in the
work of Fuchs et al. [105]

p-type NA − ND ND K = ND/NA

Ge:Ga #1 3.1 × 1014 3 × 1012 9 × 10−3

Ge:Ga #2 7.7 × 1015 9 × 1013 1.2 × 10−2

Ge:Ga #3 1.7 × 1016 2 × 1014 1.2 × 10−2

Ge:Ga #4 1.0 × 1015 1.2 × 1013 1.2 × 10−2

n-type ND − NA NA K = NA/ND

Ge:As #1 3.5 × 1014 8.5 × 1012 2.4 × 10−2

Ge:As #2 1.2 × 1015 1.2 × 1013 1.0 × 10−2

concentration. Currently, this is the best method to vary
the free-carrier concentration independently from com-
pensation ratio. As opposed to other doping methods,
NTD yields a very homogeneous, perfectly random dis-
tribution of the dopants down to the atomic levels [246].
Thus isotopically controlled crystals offer a unique pos-
sibility to study systematically the scattering mech-
anism of the charge carriers in semiconductors. Ex-
tensive Hall-effect and resistivity measurements from
room temperature down to 4.2 K yielded very accurate
free-carrier concentrations and mobilities as a function
of temperature and doping level were done in papers
[105, 247, 248]. Itoh et al. have performed temperature-
dependent Hall measurements on four different p-type
and two-different n-type Ge crystals. The n-type crys-
tals were obtained through NTD of isotopically en-
riched 74Ge, and the p-type crystals correspondingly
from NTD of isotopically enriched 70Ge. The neutron
cross-section for the neutron capture of the isotope for
these irradiations were determined to be σc(70Ge) =
2.5(5) × 10−24 cm2 and σc(74Ge) = 0.6(1) × 10−24 cm2

by Itoh et al. [249]. To remove structural defects due to
the unintentional irradiation with fast neutrons, all sam-
ples had to be thermally annealed at 650◦C for 10 s in a
rapid thermal annealer. Hall mobility obtained from the
conductivity and free-carrier concentration data (listed
in the Table XIII) are displayed in Fig. 52. A magnetic
field of 3 kG was used, that is, for the temperature range
of interest for the neutral impurity scattering the high-
field limit µB �1 is satisfied and the Hall mobility can
be equated with the drift mobility.

Fuchs et al. [105] analyzed the mobility data of
Fig. 52 in terms of scattering of the carriers from
phonons (µ1), ionized impurities (µi) and neutral im-
purities (µn) assuming next rule

1

µ
= 1

µ1
+ 1

µi
+ 1

µn
(101)

To extract the neutral impurity scattering contribu-
tion, they subtracted 1/µ1 + 1/µi from the measured
1/µ. The relative contributions of phonon scattering
(1/µ1), ionized impurity scattering (1/µi) and the re-
sulting neutral impurity scattering (1/µ−1/µ1−1/µi)
are plotted in Fig. 53 (data Ge:Ga #2). For T > 80 K,
phonon scattering is the dominant scattering mecha-
nism. On comparison of Figs 52 and 53, it becomes
clear that the “dip” in the carrier mobility around 50 K
is caused by scattering from ionized impurities, which
dominate the scattering of the carriers between 20 and
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Figure 52 Temperature dependence of the carrier mobility of (a) p-type and (b) n-type NTD Ge crystals (after [105]).

Figure 53 Temperature dependence of the relative contributions to the
mobility. Note that the mobility is dominated by neutral impurity scat-
tering below 20 K (70Ge:Ga #2 crystal) (after [105]).

80 K. The flattering and saturation of the mobilities
below 20 K originate from neutral impurity scattering,
which can only be observed in crystals with very high
crystalline quality and low compensation like isotopi-
cally enriched NTD Ge crystals used in paper [247].

The experimental data, obtained in [247] allow these
authors quantitative comparison with theory. Accord-
ing to Erginsoy [250], the inverse relaxation time
τ−1, the scattering rate, for neutral-impurity scattering
equals:

τ−1 = 20k NN h̄3

m∗2e2
, (102)

where k is dielectric constant, e is the electron charge,
NN is the neutral-impurity concentration, and m∗ is the
electron effective mass. Equation 102 can be considered
only as a first-order approximation because the prefac-
tor 20 is an empirically determined constant and only
the lowest s partial wave is taken into account in the
phase-shift calculation (see also [251, 252]). McGill
and Baron [253] have used for τ−1

neutral the following
equation:

τ−1
neutral = 4π NN h̄e

2km∗EB

∞∑
l=0

(l + 1)

4w1/2
[3 sin2(δ−

l − δ−
l+1)

+ sin2(δ+
l − δ+

l+1)], (103)

where EB is the binding energy of the scattering cen-
tres, w ≡ E/EB and E is the incident electron energy,
and δ+

l and δ−
l are the lth partial shift for the singlet

and triplet states respectively. Authors [253] graphi-
cally showed the accurate τ−1

neutral as a function of w for
neutral-impurity scattering in semiconductors. This re-
sult has been considered as an appropriate model for
neutral-impurity scattering in semiconductors and has
been discussed in detail in many standard textbooks
(see, e.g. [254]).

Meyer and Bartoli reevaluated this task and obtained
an analytical expression that is essentially the same as
the graphical solution of authors of paper [253] but
covering a wider incident-electron energy range (see
also [255]):

τ−1
neutral = A(w)k N N h̄3

m∗2
H e2

, (104)

with

A(w) = 35.2

w1/2

(1 + e−5w)(1 + 80.6W + 23.7w2)

(1 + 41.3w + 133w2)

×
[

1

w
ln(1 + w)− (1 + 0.5w − 1.7w2)

(1 + w)3

]
.

(105)

Here m∗
H is the hydrogenic effective mass given by

m∗
H = EBk2m0

EH
. (106)

In last equation m0 is the electron rest mass and EH =
13.6 eV is the binding energy of hydrogen. In total-
mobility calculation Itoh et al. [247] employ a standard
relaxation-time approximation. This approach is valid
because they are limiting to low temperatures (T <

25 K) where the inelastic optical-phonon deformation-
potential scattering is negligible. Three scattering
mechanisms are considered: neutral-impurity, ionized-
impurity, and acoustic-phonon deformation-potential
scattering. The neutral-impurity scattering contribution
was calculated using both Equations 102 and 104 so it

3382



can compare the models of Erginsoy and Meyer and
Bartoli with experimental results of paper [247]. The
concentration of neutral-impurity centres as a function
of temperature NN(T ) in each sample is given by next
relation

NN(T ) = NMJ − NMN − n(T ). (107)

Here NMJ, NMN and n(T ) are the majority-impurity,
minority-impurity, and free-carrier concentrations, re-
spectively. For the ionized-impurity scattering, Itoh
et al. employ the Brooks-Herring expression [255,
256]:

τ−1
ion = π NIe4(kBT )−3/2x−3/2

(2m∗
con)1/2k1/2

[
ln

[
1+4x

a

]

− 4x/a

1 + 4x/a

]
, (108)

n(T ) = 2(NMJ−N MN)

{[1 + (NMN/gN B)exp(EMJ/kBT )]+√
[1 + (NMNgN B)exp(EMJ/kBT )]2 + (4/gN B)(NMJ−N MN) exp(EMJkBT )} , (114)

where

a = 2π h̄2e2n

m∗kk2
BT 2

, (109)

and x = E/kBT (E is the incident electron energy),
m∗

con is the average conductivity effective mass, and NI
is the ionized-impurity concentration. The temperature-
dependent NI in each sample is given by

NI(T ) = n(T ) + 2NMN. (110)

For the acoustic-phonon deformation-potential scat-
tering [257]:

τ−1
ac = Bac(m∗

conT )3/2x1/2, (111)

where the constant Bac has well-established values for
n- and p-type Ge as shown in Table XIV. Having found
τ−1 of all three scattering mechanisms, Itoh et al. cal-
culated an average 〈τ 〉 using the Maxwell-Boltzman
integration:

〈τ 〉 = 4

3
√

π

∫ ∞

0

x3/2exp(−x)

τ−1
ac + τ−1

ion + τ−1
neutral

dx . (112)

T ABL E XIV Parameters used in the total-mobility calculations (after
[247])

Ga:As (n-type) Ge:HGa (p-type)

k 16 16
m∗

con 0.12 m0 0.28 m0
a Bac 1.08 × 1010 g3/2K−3/2 9.50 × 108 g3/2K−3/2

BB(theoretical) 12.5 meB b 11.2 meVc

aThe values of B are determined experimentally using ultrapure n- and
p-type Ge of NMJ ∼ NMN ∼ 3 × 1011 cm−3.
bM. Altarelli, W. Y. Hsu and R. A. Sabatini, J. Phys. C 10, L605 (1977).
cA. Baldareshi and N. O. Lipari, in Proc. 13th Inern. Conf. Phys. Semi-
cond. (F. G. Fumi, ed, North-Holland, Amsterdam, 1976) p. 595.

Finally the total mobility µtot was given by

µtot = e〈τ 〉/m∗
con. (113)

All parameters required for the mobility calculations
are well-known in Ge (see Table XIV). The only un-
known material parameters at this point are sample-
dependent NMJ, NMN and n(T ) in Equations 107 and
110. All three parameters as will shown below, can be
determined precisely for each sample by performing
variable-temperature Hall-effect measurements. Con-
sequently all mobility calculations are performed with-
out any adjusable or scaling parameters. The exper-
imental curves are fitted with the following standard
semiconductor statistics [258], which describes the
temperature dependence of the free-carrier concentra-
tion in semiconductors doped by shallow majority im-
purities NMJ and compensated by minority impurities
NMN:

where g = 1/2 (g = 4) is the spin degeneracy for
a donor (acceptor), NB is the effective conduction-
(valence-) band density of states, and EMJ are the exper-
imentally determined ionization energies: 14 and 11.07
meV for As and Ga, respectively (Table XIV).

Fig. 53 shows the relative strength of the scattering
from the ionized and the neutral impurities. There is
only a relatively small temperature region in which the
scattering from the neutral impurities dominates. This
range extends to higher temperatures as the free-carrier
concentration is increased. The calculated “transition
temperatures” above which the ionized impurities are
the main scattering centres (see also [259]) compare
very well with experimental results of Itoh et al. [247]
(see also Fig. 54).

Figure 54 Data points represent experimentally measured carrier mo-
bility in (a) four 74Ge:As and (b) two 70Ge:Ga samples. For a direct
comparison theoretically calculated mobility using Erginsoy’s model
(broken line) and the model of Meyer and Bartoli (solid line) is shown
for each sample. The contributions of the different scattering mecha-
nisms to the total mobility of the 70Ge:Ga—1 sample are shown in the
upper half of (b) (after [247]).
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We now turn the attention to the low-temperature
regime where mobilities are dominated ny neutral-
impurity scattering. Fig. 54 shows a direct comparison
of the experimental results with theoretical total-
mobility curves calculated. For each sample two the-
oretical total-mobility curves are calculated: one using
Erginsoy’s model [Equation 102] and other using
Meyer and Bartoli model [Equation 104]. A strikingly
good agreement was obtained between the experimen-
tal and theoretical mobilities calculated with the model
of Meyer and Bartoli for all samples (see Fig. 54).

In order to demonstrate the importance of the ho-
mogeneous dopant distribution, Itoh et al. have per-
formed the same study on samples cut from Ge:Ga crys-
tals grown by the conventional Czochralski method,
where Ga impurities were introduced to Ge melt dur-
ing the crystal growth. These authors observed devi-
ations of the measured mobility from the theoretical
calculations, which are most likely due to inhomo-
geneous Ga impurity distributions in melt-doped Ge.
Only the use of NTD semiconductors with randomly
distributed dopants allows for an accurate test of the
neutral impurity-scattering models.

2.8.2. Silicon
It is well-known that doping of silicon single crystals
by incorporation of impurities from the melt during so-
lidification in most cases leads to an inhomogeneous
distribution of impurities in the solids [155, 236]. This
is due to the fact that nearly all impurities in silicon have
thermal equilibrium distribution coefficients much less
than unity and that the solidification or crystal grows
at each position of the interface is characterized by a
different state of thermal inequilibrium leading to dis-
tribution coefficients that in space and time continu-
ously change and result in a nonuniform impurity dis-
tribution [162, 260]. In actual crystal production the
nonuniformity is further enhanced by lack of control
of exactly constant melt volume and feed of the dop-
ing impurity. The most widely used doping elements
in silicon are boron and phosphorus. Boron has a dis-
tribution coefficient between 0.9 and 1 which makes
a doping uniformity of ±10% easily obtainable (see,
e.g. [236]). The thermal equilibrium distribution coef-
ficient for phosphorus of approximately 0.3 leads in
general to the above mentioned large doping variations
both on a macroscale (center to periphery) and on a mi-
croscale (striations). No other n-type doping element
has a larger distribution coefficient. Because fast dif-
fusing p-type dopants (Ga, Al) are available, because
electron mobility is greater than hole mobility, and be-
cause contact alloying technology is reasonable, n-type
silicon is generally used for solid state power devices
[162, 261]. With avalanche breakdown voltages being
determined from areas with lower resistivities, use of
a conventionally doped material results in hot-spot for-
mation prior to breakdown and too high forward voltage
drop leading to excessive heat dissipation because of a
safe punch through design [155, 236, 262].

Phosphorus doping by means of NTD was suggested
by Lark-Horovitz [180] and Tanenbaum and Mills [154]

for homogeneity purposes and has been applied for
high-power thyristor manufacturing in [155, 236, 261].
Hill et al. [261] were demonstrated how such a homo-
geneous phosphorus doping may result in a “theoreti-
cal design” possibility for high-power components (see
also below).

The process used for fractional transmutation of sil-
icon into phosphorus and thereby performing n-type
doping

30
14Si(n, γ ) = 31

14Si
β−

2.62 h → 31
15P (115)

was first pointed out by Lark-Horovitz in 1951 [180].
Apart from special applications [263] and research, the
above process was, however, not utilized to any extent
until the early seventies, at which time manufacturers
of high-power thyristors and rectifiers for high-voltage
direct current transmission lines, in particular, initi-
ated usage of the transmutation doping process [193,
261, 264]. The reasons for not using the neutron dop-
ing method throughout the sixties may be found in the
lack of a processing technology which could benefit
from a more uniform doping, insufficient availability
of high resistivity starting material, and the lack of nu-
clear reactors with irradiation capacities in excess of
that needed for testing fuel and materials for nuclear
power stations.

Let us, for the following discussion, assume that com-
pletely uniform neutron doping may be accomplished.
The homogeneity of the doped silicon is in this case
determined by the background doping, i.e., the distri-
bution of impurities in the starting material, where the
net impurity concentration may be of either donor or
acceptor type. Let us further, for simplicity, consider
starting material of one conductivity type and assume
complete n-type conduction after irradiation and an-
nealing. With CS being the net impurity concentration
of the starting material and CD the resulting donor con-
centration after irradiation we have, for both n- and
p-type material,

Cmax
D − Cmin

D = Cmax
S − Cmin

S . (116)

In such case we may define

1. the homogeneity factors for the starting material
(αS) and for the neutron doped material (αD), respec-
tively

αS = Cmin
S

Cmax
S

(117)

and

αD = Cmin
D

Cmax
D

(118)

and
2. the doping factor

fD = Cmax
D

Cmax
S

. (119)
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T ABL E XV Values for homogeneity factor αD as function of homo-
geneity factor αs of starting material and doping factor fD as defined in
text (after [193])

αS/ fD .1 .2 .3 .4 .5 .6 .7 .8 .9
1 .1 .2 .3 .4 .5 .6 .7 .8 .9
2 .55 .6 .65 .7 .75 .8 .85 .9 .95
5 .82 .84 .86 .88 .9 .92 .94 .96 .98
7 .87 .89 .90 .91 .93 .94 .96 .97 .99

10 .91 .92 .93 .94 .95 .96 .97 .98 .99
20 .955 .96 .965 .97 .975 .98 .985 .99 .995
50 .98 .98 .99 .99 .99 .99 .99 .996 .998

100 .991 .992 .993 .994 .995 .996 .997 .998 .999

From this is easily derived

1 − αD = 1−αS

fD
. (120)

Table XV summarizes values of αD as a function of
αS and fD. It is seen that in order to obtain neutron-
doped silicon with, for instance, a homogeneity factor
greater than 0.9, it is necessary to use a doping factor of
at least 7 when starting from “undoped” n-type material
in which the homogeneity factor is typically not greater
than 0.3 when taking the microcavitations (striations)
into account. An examples of such neutron-doped sil-
icon are shown in Figs 55 and 56. It should be noted
that in terms of resistivity, which is often used for im-
purity characterization, a doping factor fD means use

Figure 55 Spreading resistance measurements of a thermal neutron ir-
radiation doped silicon slice. Step-length on scan 1 and 2 is 250 µm
and on scan 3 step-length is 50 µm. Starting material has been selected
greater than 1500� cm n-type (after [193]).

of starting material with minimum resistivity a factor
fD or 2.8 fD greater than the resistivity after neutron
doping for n- and p-type starting material, respectively.
The difference is due to the electron mobility being
2.8 times greater than the hole mobility. In conclusion
of this section it should be generally noted that in order
to make neutron-doped silicon with significantly more
uniform resistivity than conventionally doped material,
a doping factor fD = 5 or more should be applied.

Following Janus and Malmros [193] let us consider
further the theoretical case where a cylindrical silicon
crystal is surrounded by a material with the same neu-
tron absorption and scattering efficiency as the silicon
itself (see Fig. 57). Let us furthermore assume a thermal
neutron flux gradient along an x axis perpendicular to
the crystal axis with the neutrons coming from an ex-
ternal source. In this case the neutron flux will have the
form

� = �0 · exp

(
− x

b

)
, (121)

where b, the decay length, may be obtained from the
formula

b = (
3 · σSi · σSi,t · C2

Si

)−0.5
. (122)

σSi = 0.16 · 10−24 cm2 is the mean of the absorp-
tion cross-sections for the 3 silicon isotopes, 28Si,
29Si and 30Si weighted with their abundances. σSi,t =
2.3 · 10−24 cm2 is the total cross-section (absorption
+ scattering) and CSi = 4.96 · 1022 cm−3 is the total
number of silicon atoms in 1 cm3. Hence b may be
calculated:

bsilicon = 19 cm. (123)

In order to improve the doping homogeneity in the
cylindrical crystal this will be slowly rotated around its
axis. The time average of this flux at the distance r from
this axis is

�̄ = 1

π

∫ π

0
�0 exp

[
− r

b
cost

]
dt

= �0

[
1+1

4

(
r

b

)2

+ · · · · ·
]
. (124)

The ratio between the neutron dose at the periphery
and at the axis of the crystal cylinder will then be

�̄(a)

�̄(0)
� 1 + 1

4

(
a

b

)2

, (125)

where a is the crystal radius (Fig. 57).
For intrinsic starting material the irradiation doped

silicon will thus have a homogeneity factor of

αD � 1 − 1

4

(
a

b

)2

� 0.956 (126)

for an 80-mm-diameter crystal, i.e., the absorption lim-
iting factor for the obtainable radial variations.
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Figure 56 Typical lateral microscopic resistivity distributions in conventionally doped silicon and in silicon doped by neutron irradiation (after [236]).

Figure 57 Irradiation configuration. (a) Top view of the facility with the
cylindrical crystal situated outside the core rotating around its cylindrical
axis. Arrows indicate overall direction of neutrons. The flux does not
vary along the cylindrical axis. (b) The neutron flux is a function of the
distance from the reactor core (after [193]).

In the above analysis we have neglected the effects of
fast neutron moderation in the silicon. By comparison,
however, of irradiations performed in reactors with fast
neutron fluxes from 10−4 to 1 times the thermal flux and
with different flux gradients, the authors [193] have
observed no influence on the resistivity homogeneity
due to fast neutron moderation in the silicon.

In irradiated silicon crystals for semiconductor de-
vice applications only two isotopes 31Si and 32P are
of importance in connection with radioactivity of neu-
tron doped material. For thermal neutron doses less than
1019 neutron/cm2, no other elements have been detected
emitting radiation. Futhermore, 31Si, having a halflife
of 2.62 h, decays to an undetectable level in 3–5 days.
For this reason, it will be discussed the radioactivety
only of the 32P isotope. Fig. 58 pictures the 32P activity
as a function of final resistivity for a variety of thermal
neutron flux levels typical for the nuclear test reactors
in use. As was shown in [193] absolute flux determina-
tion to 1% accuracy has proven obtainable for instance

Figure 58 The radioactivity of the 32P isotope in silicon after 4 days of
cool down subsequent to irradiation. It may be observed that the activity
as function of the resistivity obtained depends on the neutron flux used
(after [193]).

by means of calorimetric boron carbide monitors.

31
15P(n, γ )32

15Pβ−

14.3d → 32
16S (127)

as a secondary one with 31P concentration at each in-
stant in time being dependent on the neutron dose re-
ceived and the time allowed for the 31

14Si β−

2.62 h → 32
15P

decay.
From Fig. 58 it may be observed that neutron doping

below 5 � · cm can be performed only when accept-
ing cool down periods corresponding to the 32P halflife
of 14.3 days. The exempt limit for inactivity of 2 ×
10−3 µCi/g shown on the figure is representative for
most European countries, as well as being the value
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recommended by the International Atomic Energy
Agency (IAEA), Vienna, Austria [265]. It should be
added that careful cleaning of the silicon prior to in-
sertion in a nuclear reactor is vital to avoid radioactive
surface contamination. For the safety of the personnel
and the end product users, a double check upon ship-
ping from the reactor sites and upon reception in the
silicon plant, respectively is carried out to secure that
only inactive material (below the exempt limit) is being
further processed after the neutron doping. In general,
this implies shipment from the reactor not earlier than
4 days after irradiation.

The use of NTD is of particular interest to thyris-
tor manufacturers where n-type starting material is re-
quired for the basic p-n-p structure [259, 260]. Some
advantages for high power device design and perfor-
mance include:

1. more precise control of avalanche breakdown
voltage,

2. more uniform avalanche breakdown, i.e., greater
capacity to withstand overvoltages,

3. more uniform current flow in forward direction,
i.e., greater surge current capacity, and

4. narrower neutral zone and therefore narrower base
and lower forward voltage drop Vf.

The summary of some points concerning the prepa-
ration of NTD silicon for special applications on an R
and D scale describe in papers [260–261]. The pro-
duction of large quantities of NTD silicon for power
devices is described in [190]. More recently (see, e.g.
[266]) the NTD technique has been also proposed for
the effectual doping of P in a-Si:H films (see also [4]).
The results of [266] are shown that NTD technique is
an excellent method for doping of P in a-Si:H.

Despite intensive study over many years and consid-
erable progress, no clear understanding has emerged
of one of the fundamental issues regarding the
MIT in doped semiconductors and amorphous metal-
semiconductor mixtures: whether and under what cir-
cumstances the Hall coefficient diverges as the tran-
sitions is approached (see above for Ge). As is
well-known in the localized regime the spatial behavior
of the wave functions is usually described by an expo-
nential decay length reflecting the spatial extent of the
wave function (see e.g. [267–269]). Dai et al. recently
are shown that the Hall coefficient of Si:P diverges at
the transitions, as it does in Si:B [270] and Ge:Sb [271].
The difference in the behavior of MIT according these
authors may be connected with a different degree of
compensation. It is also possible that the MIT is differ-
ent in a persistent photoconductor, where the disorder
is particularly strong and the concentration of shallow
donors is varied and controlled through illumination.
(details see also [268, 269]).

2.8.3. Other compounds
The NTD method have used with success in study
of compound semiconductors: GaAs [184, 272–274]
and GaP [275, 276]. NTD of GaAs is based on the

following thermal neutron capture nuclear reactions
(see also [184]):

69Ga (n, γ ) 70Gaβ−

21.1 min → 70Ge, (128)

71Ga (n, γ ) 72Gaβ−

14.1 h → 72Ge, (129)

75As (n, γ ) 76Asβ−

26.3 h → 76Se. (130)

The relative abundances of the isotopes involved in
the reactions and the cross-sections for these reactions
are such that the ratio of Se and Ge concentrations pro-
duced is

NSe/NGe = 1.46. (131)

Selenium is a typically shallow substitutional donor
in GaAs with an electronic energy level a few meV from
the conduction bans edge [277]. Germanium in GaAs is
an amphoteric impurity which acts as a shallow donor
(also a few meV from the conduction band) is situated
on a Ga site and as an acceptor level at EV + 0.04 eV
if situated on an As site [278]. Since, if electronically
active, all of the Se atoms and some portion of the Ge
atoms are expected to act as donors, NTD of GaAs is
expected to dope GaAs more n-type. The addition of
donors moves the Fermi level (EF) away from the va-
lence band (EV) to the conduction band (EC). If a suf-
ficiently high concentration of donors is added, EF will
move to the upper half of the bandgap and the GaAs will
be converted to n-type. Analysis of Hall effect data as a
function of temperature provides a means of measuring
the donor content in irradiated GaAs samples. Young
et al. were thus able to compare electrically active added
donor content to the NTD-produced impurity concen-
trations determined from nuclear measurements. The
Hall effect analysis also allows them to determine con-
centrations and energy levels (E) of impurities or de-
fects in the p-type GaAs samples if the Fermi level in
the material moves near E at some temperature over the
range of measurements. This technique thus provides a
means of identifying and measuring undercompensated
acceptor content in the samples. The low temperature
photoluminescence technique used in paper [184] mea-
sured donor-to-acceptor or conduction-band-acceptor
luminescence. It provides an accurate determination of
the position of acceptor electronic levels in the GaAs,
permitting positive identification of impurities or de-
fects with known luminescence lines. Identifications of
lines due to specific impurities or defects can be made
using luminescence techniques regardless of the posi-
tion of the Fermi level in material. Little detailed infor-
mation concerning an acceptor level can be obtained
from Hall effect if that acceptor is overcompensated.
However, the presence of specific acceptors can be de-
tected by luminescence techniques even in n-type sam-
ples. On other hand, luminescence data do not provide
the quantitative information obtainable from Hall effect
measurements.

The results of room temperature measurement of
the electrical properties of eight annealed NTD GaAs
samples are summarized in Table XVI. The total NTD
dose (NSe + NGe), the carrier concentration and carrier
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T ABL E XVI Room temperature results for Hall effect samples of
GaAs annealed 830◦C/20 min (after [184])

n (−) or
Sample no NTD dose/cm3 P (+) in cm−3 µ, cm2 V−1 s−1

1, 2 3.8 × 1015 +2.3 × 1016 360
3 8.5 × 1015 +2.4 × 1016 341
4 1.7 × 1016 +1.9 × 1016 337

10 2.7 × 1016 +8.6 × 1015 242
12 7 × 1016 −1.6 × 1016 1251
20 1.5 × 1017 −7.7 × 1016 3960
15 2.8 × 1017 −2.3 × 1017 3631
16, 18 6.3 × 1017 −4.9 × 1017 3110

type (negative values of concentration indicate n-type),
along with carrier mobility at room temperature are in-
dicated in Table XXII. Note that following an NTD dose
sufficient to produce 7 · 1016 atoms/cm3 initially present
in the samples. Therefore, 7 × 1016 donors/cm3 would
indeed be expected to just overcompensate the p-type
material. The results presented in Table XVI show that
the p-type samples become progressively less p-type
and the n-type samples progressively more n-type with
increasing NTD dose. Because the donor levels in GaAs
are very shallow, they remain fully ionized in the tem-
perature range of Young et al. experiments, so that the
measured electron concentration is practically temper-
ature independent (see Fig. 4 in [184]). This measured
n for each sample is approximately equal to total donor
minus total acceptor concentration.

Fig. 59 shows the measured in [184] added electri-
cally active donor concentration in eight NTD samples
as a function of NSe and of (NSe + NGe) added by
transmutation as determined from nuclear activity mea-
surements. The uncertainty in determining added donor
content in the p-type samples is large because of the
complexity of analyzing material with multiple inde-
pendent acceptor levels in closely compensated cases.
The added donors can be much more accurately deter-
mined in the more highly doped n-type samples. The
results shown in Fig. 59 imply that all of the selenium

Figure 59 Measured added donors vs. NTD produced impurity content
(after [184]).

Figure 60 Relative photoluminescence spectra for four n-type NTD
samples. The four spectra are not normalized with respect to each other
(after [184]).

and a substantial fraction of the Ge atoms introduced by
transmutation act as donors following the 830◦C/20 min
anneal. As will be shown below from photolumines-
cence measurements a fraction of Ge atoms produced
by transmutation are on acceptor rather than donor sites
in GaAs samples.

Fig. 60 show relative luminescence spectra for the
four n-type samples respectively. The spectral positions
indicated by arrows for carbon acceptor, the Ge ac-
ceptor, and 0.07 eV acceptor correspond to donor (or
band) to acceptor luminescence lines. The most impor-
tant conclusion to be drawn from a comparison of the
spectra for the control and eight NTD samples is that Ge
acceptors not present in the “starting material” control
sample are introduce by the NTD process. The increase
in intensity of the Ge acceptor line with increasing dose
relative to both the carbon and 0.07 eV acceptor lines
indicates that Ge acceptor content increases with in-
creasing transmutation doping. Therefore, some of the
Ge atoms produced by NTD in these samples are act-
ing as acceptors rather than donors. Photoluminescence
measurement studies of the control and eight annealed
NTD samples at longer wavelengths indicate another
new line present only in NTD samples at about 9450 Å.
The intensity of this line increases with increasing NTD
dose.

The characteristic lifetimes of radioactive isotopes
can be used to label and identify defect levels in semi-
conductors which can be detected by photolumines-
cence [273] and Raman-scattering spectroscopy [274].
Magerle et al. [273] show photoluminescence spectra
of GaAs doped with 111In that decays to 111Cd. 111In is
isoelectronic to Ga and hence occupies Ga lattice sites
in GaAs. It decays to 111Cd with a lifetime τ111In = 98 h
by electron capture [279]. Since the recoil energy of the
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Figure 61 Photoluminescence spectra of undoped and 111In doped GaAs successively taken 4 h; 7 h; 12 h; 22 h; 2 d; 4 d and 9 d after doping. All
spectra are normalized to the intensity of the (e, C) peak. In the inset, the height ICd/IC of the (e, Cd) peak in these spectra is shown as a function of
time after doping with 111In. The solid line is a fit to the data using Equation 139 (after [273]).

Cd nucleus due to the emission of the neutrino is much
smaller than the typical displacement energy in GaAs
[280], 111Cd atoms on Ga sites (CdGa) are created by
the decay of 111In on Ga sites (111InGa) and act there
as shallow acceptors. This chemical transmutation was
monitored by photoluminescence spectroscopy. Fig. 61
shows successively taken photolumunescence spectra
from the 111In doped sample. A spectrum from the
undoped part is also shown. The photoluminescence
spectrum of the undoped part of the sample shows the
features well known for undoped MBE-grown GaAs
[281]. The peaks FX and AX around 819 nm are due to
the recombination of free and bound excitons. The peak
(e,C) at 830 nm and its LO phonon replica (e,C)-LO at
850 nm are due to recombination of electrons from the
conduction band into C acceptor states. The recombi-
nation of electrons from donor states into C acceptor
states appears as a small shoulder at the right-hand sides
of either of these two peaks. C is a residual impurity
in GaAs present in MBE-grown material with a typi-
cal concentration between 1014 and 1015 cm−3 [281].
Magerle et al. determined the height ICd/IC of the
(e, Cd) peak normalized to IC as the function of time
after doping. These was done by substracting the nor-
malized spectrum of the undoped part from the normal-
ized spectra of the 111In doped part. The height ICd/IC
of the (e,Cd) peak remaining in these difference spectra
is displayed in the insert of Fig. 61. Indicated authors
fitted these data by

ICd

IC
(t) = ICd

IC
(t =∞)

(
1 − e− t

τ

)
(132)

and obtained a time constant τ = 52(17) h, which is
not the nuclear lifetime τ111In = 98 h of 111In. Evidently
ICd/IC is not proportional to NCd. The photolumines-
cence intensity ICd is proportianal to the recombina-
tion rate of excess carriers per unit area through Cd
acceptors states �nL BCd NCd, where BCd is a recom-
bination coefficient. The excess sheet carrier concen-
tration in the implanted layer �nL can be expressed in
terms of the total carrier lifetime in the implanted layer

τL and the generation rate of excess carriers per unit
area in the implanted layer fLG by using the first of the
two equilibrium conditions

fLG = �nL

τL
and fBG = �nB

τB
(133)

The second one describes the balabce between the
generation rate fBG and the recombination rate of ex-
cess carriers �nB

τB
in the bulk. The total generation rate

G is proportional to the incident photon flux and fL +
fB = 1. To get an expression for τL, cited authors as-
sumed two additional recombination processes in the
implanted layer: the radiative recombination via Cd ac-
ceptors and nonradiative recombination due to residual
implantation damage, and write the recombination rate
in the small single approximation (see, e.g. [282]) as

�nL

τL
= �nL

τB
+ �nL BCd NCd + �nL Bnr fnr NCd (134)

Here �nL Bnr fnr NCd is the nonradiative recombina-
tion rate per unit area due to residual implantation dam-
age, fnr NCd is the concentration of these nonradiative
recombination centers, and Bnr is the corresponding re-
combination coefficient. Hence �nL and �nB can be
expressed as a function of NCd and the recombination
rates through all the different recombination channels
and thereby the relative photoluminescence peak inten-
sities can be deduced. IC is proportional to the sum of
the (e,C) recombination rates per unit area in the im-
planted layer and the bulk and within this model it can
obtain

IC ∝ �nL+�nB

τC
= G

τB

τC

(
fL

1 + �Cd/ f Bb
+ fB

)
. (135)

Here �Cd is the dose between 109 and 1013 cm2.
Thereby τC = 1/BC NC is an effective lifetime describ-
ing the recombination probability through C acceptor
states and b is a constant defined below. With help of
Equations 133 and 135 it can be obtain (assuming that
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the detection efficiencies of both peaks are equal) the
following relation between ICd/IC and �Cd:

ICd

IC
= �nL BCd NCd

(�nL + �nB)/τC
= a

1 + b/�Cd
, (136)

with

a = fL

fB

BCd

(Bnr fnr + BCd)

τC

τB

and

(137)
b = d

fB(Bnr fnr + BCd)τB
.

This model describes quantitatively the dependence
of (e, Cd) intensity of NCd and cited authors use it to
describe the increase of ICd/IC with time in the 111In-
doped sample. Authors [273] model the change of the
carrier lifetime τL with time t in the 111In doped sample
as

1

τL
= 1

τB
+ BCd NIn

(
1 − e− t

τ

)
Bnr fnr, (138)

where NIn = �In/d is the initial 111In concentration, τ =
τ111In = 98.0 h is the nuclear lifetime of 111In, and BCd,
Bnr and fnr are the same constants as above. Thereby we
assume following Magerle et al. that the same kinds of
nonradiative recombination centers are produced by In
doping as by Cd doping and that the Cd concentration
are identical to the 111In concentration profile. Taking
into account all above saying we can write

ICd

IC
= a

1 + b/�In
(
1 − e− t

τ

) + c
/(

e− t
τ −1

) , (139)

where a and b are the same constants as above and
c = Bnr fnr/(Bnr fnr + BCd). This c term accounts for
the fact that the 111In doped sample the concentration of
nonradiative centers is not changing with Cd concen-
tration. Magerle et al. fitted Equation 139 to the data
shown in inset of Fig. 61, keeping τ = 98.0 h, a = 1.25
and b = 3.0 × 1011 cm−2, and obtained �In = 4.49 ×
1011 cm−2 and c = 0.5 (2). This fit is shown as a solid
line and agrees perfectly with the experimental data. In
conclusion of this part it should note that this identifica-
tion technique is applicable to a large variety of defect
levels since for most elements suitable radioactive iso-
tope exist (details see [279]).

Coupling between the LO phonon mode and the lon-
gitudinal plasma mode in NTD semi-insulating GaAs
was studied in paper [274] using Raman-scattering
spectroscopy and a Fourier-transform infrared spec-
trometer. Raman spectra are shown in Fig. 62 for unir-
radiated, as-irradiated and annealed samples. The re-
markable feature is the low intensity and asymmetric
linewidth of the Lo-phonon spectrum observed in an-
nealed samples, which are annealed above 600◦C. The
behavior is not understood by considering the only LO
phonon. We should pay attention to the electrical acti-
vation of NTD impurities, which begin to activate elec-
trically around 600◦C. In the long-wavelength limit, the
valence electrons, the polar lattice vibrations, and the

Figure 62 Raman spectra at room temperature taken for the various
annealing temperatures of (100)—oriented NTD GaAs irradiated with
neutron dozes (athermal neutron of 1.5 × 1018 cm−2 and a fast neutron
of 7 × 1017 cm−2). The coupling L+ mode is observed at annealing
temperatures above 600◦C (see Table XVII) (after [274]).

conduction electrons make additive contributions to the
total dielectric response function [283]:

εT(0, ω) = ε∞ + (ε0−ε∞)
/[(

1−ω2/ω2
t

) − ω2
pε∞/ω2].

(140)

The high-frequency value (L+) of the mixed LO-
phonon-plasmon modes is calculated from the roots of
the dielectric constant of Equation 132. The frequen-
cies of the L+ mod e and of the longitudinal plasma
mode ωp = (4πne2/ε∞m∗)1/2 for various annealing
temperatures are listed in Table XVII. Here n is the elec-
tron concentration, m∗ the effective mass in the conduc-
tion band (= 0.07m0), and ε∞ (= 11.3) the optical di-
electric constant. The mixed LO-phonon-plasma mode
appears around 300 cm−1 for electron concentration
of (0.8–2) × 1017 cm−3. The phonon strength [283]

TABLE XVII Electron concentrations and the coupling modes of
NTD GaAs (after [274])

LO-phonon
frequency L+ mode PF

Sample EC (cm−3) (cm−1) (cm−1) (cm−1)

Unirradiated 1 ∼ 2 × 107 296.6
As-irradiated a 295.6
500◦C annealed a 297.8
600◦C annealed 8.2 × 1016 296.0 299 96.4
650◦C annealed 2.2 × 1017 296.6 304 158
700◦C annealed 2.5 × 1017 296.2 305 168

aSince the conduction is dominated by Mott-type hopping conduction
(M. Satoh and K. Kuriyama, Phys. Rev. B40, 3473 (1989), the electron
concentration can not be measured by the van der Pauw method.
EC = Electron concentration; PF = Plasma frequency.
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Figure 63 Infrared-absorption spectra at room temperature taken for the
various annealing temperatures of the NTD GaAs used for the Raman-
scattering esperiments (after [274]).

for the high-frequency mode (L+) of the interacting
plasmon-LO-phonon mode is about 0.95 for an elec-
tron concentration of 1 × 1017 cm−3, while that for the
low-frequency mode (L−) is below 0.1. Therefore, the
asymmetric linewidth of the Raman spectrum observed
in the annealed NTD GaAs arises from both the LO-
phonon and L+ modes, but the L− mode is not ob-
served because of a very weak phonon strength. As a re-
sult, the LO-phonon intensity decreases with increasing
coupling, and L+ mode appears beside the LO-phonon
peak.

The absorption spectra in the various annealing tem-
peratures for NTD GaAs are shown in Fig. 63. In unir-
radiated samples, an absorption around 2350 cm−1 is
assigned as the antisymmetric stretching vibration of
CO2 arising from CO2 in an ambient atmosphere.The
absorption peaks observed around 500 cm−1 are also
assigned as a two-phonon overtone scattering [284]
of transverse optical phonons (TO); these were ob-
served at 493 cm−1 [2TO(X)], 508 cm−1 [2TO(L)], and
524 cm−1 [2TO(	)], respectively. In as-irradiated sam-
ples, a continuous absorption extending to the higher
energy was observed. Although this origin cannot be at-
tributed to interstitial anion clusters as discussed in neu-
tron irradiated GaP [285]. In samples annealed above
600◦C, the remarkable absorption was observed at wave
numbers below 1450 cm−1. The absorption increases
with increasing annealing temperature (see Fig. 109).
This behavior arises from the fre-electron absorption
due to the activation of NTD impurities, which occur at
annealing temperatures above 600◦C. The free-electron
absorption observed is consistent with a collective mo-
tion as a plasmon mode described in Raman-scattering
studies.

Kuriyama et al. [276] were studied by a photolu-
minescence method the transmuted impurities Ge an

S in NTD semi-insulating Gap. In NTD GaP, Ge and
S impurities are transmuted from Ga and P atoms by
(n, γ ) reactions, respectively. Ge in GaP is an ampho-
teric impurity for which both the donor and acceptor
states appear to be deep. The ratio between transmuted
impurities Ge and S is about 16:1. Unfortunately, after
the transmutation reactions, the transmuted atoms are
usually not in their original positions but displaced into
interstitial positions due to the recoil produced by the γ

and β particles in the nuclear reactions. In addition, the
defects induced by the fast neutron irradiation disturb
the electrical activation of transmuted impurities. How-
ever, Frenkel type defects [275, 286] in NTD GaP were
annealed out between 200 and 300◦C, while P antisite
(PGa) defects of ∼ 1018 cm−3 annihilated at annealing
temperatures between 600 and 650◦C. Therefore, trans-
muted impurities, Ge and S, would be substituted on Ga
and/or P lattice sites by annealing at around 650◦C.

Fig. 64 shows the photoluminescence (PL) spectra of
unirradiated and NTD GaP. The PL spectrum (peak 1)
of unirradiated samples shows signature of the DA pair
recombination involving S donor and carbon acceptor
[288]. Two (peaks 2 and 3) of the replicas occur at ener-
gies consistent with electronic transitions accompanied
by zone-center optical phonons with energies 50.1 meV
(LO	) and 100.2 (2LO	). Sulfur, silicon and carbon
in GaP are the most common as the residual impuri-
ties [288]. In NTD-GaP the main transition energy was
observed 1.65 eV. Since Ge in GaP is the amphoteric
impurity with deep acceptor and donor levels, strong
phonon co-operation will also occur. But optical transi-
tion rates will be significant only for associates. Similar
situation has been proposed for Si in GaP [287], form-
ing a nearest-neighbor SiGa-SiP complex. Therefore,
the broad emission would be expected to arise from

Figure 64 Photoluminescence (PL) spectra taken at 15 K for unirradi-
ated and NTD-GaP. PL peaks 1, 2 and 3 in unirradiated GaP represent
Sp − Cp DA pair recombination, its LO—phonon replica, and 2LO—
phonon replica, respectively. 1.65 and 1.87 eV emissions in NTD-GaP
are attributed to GeGa − GeP complex and SP − GeP DA pair recombi-
nations, respectively (after [276]).
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Figure 65 Variation of the half-width W with the square root of the
temperature T for the 1.65 eV band in NTD-GaP. Theoretical curve is a
plot of Equation 141 with hν = 0.025 eV (after [276]).

a nearest-neighbor GeGa-GeP coupled strongly to the
lattice. To confirm the presence of the GeGa-GeP com-
pose, the temperature dependence of the half-width, W ,
of the broad emission was measured. If the localized
electron transitions from the excited state to the ground
state of this complex center produce the characteris-
tics luminescence, the dependence would be appear to
follow the configuration-coordinate (CC) [289] model
equation:

W = A[coth(hν/2kT )]1/2, (141)

where A is a constant whose value is equal to W as
the temperature approaches 0 K and hν is the energy
of the vibrational mode of the excited state. In Fig. 65,
Equation 141 has been fitted to the experimental value
for NTD-GaP. For the estimation of W , the spectrum
of the 1.65 eV band was substracted from that of the
1.87 eV band. The value of hν used was 0.025 eV.
The good fit to this equation that was found for the
GeGa-GeP center in NTD-GaP shows the validity of
applying the CC model. Results of paper [276] indicate
that NTD method is a useful one for introducing Ge
donor, resulting from a fact the Ge atoms are transmuted
from Ga lattice sites in GaP. The obtained results are
consistent with the presence of the GeGa-GeP complex
as described earlier.

Chapter 3. Optical fiber
3.1. Introduction
Optical communication using fibers is a major new
technology which will profoundly impact telephone
systems, computer interconnections and instrumenta-
tion (internet). Fiber links provide several major ad-
vantages over conventional electronic communications
systems. These include immunity to electromagnetic
interference, thinner and lighter cables, lower transmis-
sion losses (especially for very data rates) and potential
kilometer-long link capabilities extending to the giga-
hertz region.

An optical waveguide is a dielectric structure that
transports energy at wavelengths in the infrared or vis-
ible ranges [290, 291] of the electromagnetic spec-
trum. In practice, waveguides used for optical commu-
nications are highly flexible fibers composed of nearly

Figure 66 Nomenclature, profiles and ranges of dimensions for typical
optical fibers, where ρ is the core radius, λ is the free-space wavelength
of light and � = (1 − n2

cl/n2
co)/2 (after [292]).

transparent dielectric materials. The cross-section of
these fibers is small—comparable to the thick of a hu-
man hair- and generally is divisible into three layers as
shown in Fig. 66. The central region is the core, which is
surrounded by the cladding, which in turn is surrounded
by a protective jacket. Within the core, the refractive-
index profile n can be uniform or graded, while the
cladding index is typically uniform [293]. The two sit-
uation correspond to the step-index and graded-index
profiles shown in the insets in Fig. 66. It is necessary
that the core index be greater than the cladding index
[294], at least in some region of the cross-section, if
guidance is to take place. For the majority of applica-
tions, most of the light energy propagates in the core
and only a small fraction travels in the cladding. The
jacket is almost optically isolated from the core, so for
this reason we usually ignore its effect and assume an
unbounded cladding for simplicity in the analysis.

As usually, optical waveguides can be conveniently
divided into two subclasses called multimode waveg-
uides (with comparatively large cores) and single-
mode waveguides (with comparatively small cores).
The demarcation between the two is below. Multi-
mode waveguides obey the condition (see e.g. [295])
(2πρ/λ)(n2

co−n2
cl)

1/2 � 1, where ρ is a linear dimen-
sion in the core, e.g., the radius of the fiber core, λ is
the wavelength of light in free space, nco is the maxi-
mum refractive index in the core and ncl is the uniform
refractive index in the cladding.

As will be shown below electromagnetic propaga-
tion along optical waveguides is described exactly by
Maxwell’s equations. However, it is well-known that
classical geometric optics provides an approximate de-
scription of light propagation in regions where the re-
fractive index varies only slightly over a distance com-
parable to the wavelength of light. This is typical of
multimode optical waveguides used for communica-
tion. Thus, the most direct and conceptually simple way
to describe light propagation in multimode waveguides
is by tracing rays along the core (see also [296, 297]). By
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using classical geometric optics, we should ignored all
wave effects. In multimode waveguides, wave effects
are usually negligible [292], but there are exceptional
situations when such effects accumulate exponentially
with the distance light travels. Naturally in this cases,
wave effects must be retained, since they can have a
significant influence in long waveguides. In each such
situation, we modify the classical geometric optics de-
scription by taking into account the local plane wave
nature of light. The phenomenon of greatest practical
interest in fibers used for long-distance communica-
tions is the spread of pulses as they propagate along the
fiber. For idealized multimode fibers, pulse spreading
is easily described by classical geometric optics. But
since propagation in multimode guides is so complex
that simple models and physical understanding are gen-
erally of much greater assistance than a precise, exact
analysis [298].

3.2. Maxwell’s equations
The spatial dependence of the electric field �E(x, y, z)
and the magnetic field �H (x, y, z) of an optical waveg-
uide is determined by Maxwell’s equations. Further we
assume an implicit time dependence exp(−iωt) in the
field vectors, current density �J and charge density σ .
The dielectric constant ε(x, y, z) is related to the refrac-
tive index n(x, y, z) by ε = n2ε0, where ε0 is the dielec-
tric constant of free space. For the nonmagnetic mate-
rials which normally constitute an optical waveguide,
the magnetic permeability µ is very nearly equal to the
free-space value µ0. Under these conditions, Maxwell’s
equations are expressible in the form (see, e.g. [299])

�∇ × �E = −∂ �B
∂t

= −µµ0
∂ �H
∂t

(142)

�∇ × �H = ∂ �D
∂t

= εε0
∂ �E
∂t

(143)

�D = εε0 �E (144)

�B = µµ0 �H (145)

�∇ · �D = 0 (no free charges) (146)

�∇ · �B = 0 (no free poles). (147)

We will assume further that our guiding structure
along the z direction. Thus we look for solutions to
problems in which the z dependence of the field is of
the form

�E = �E0(x, y) exp i(ωt − zk · z) (148)

�H = �H 0(x, y) exp i(ωt − zk · z) (149)

In this expression we note that ω is related to ν, the
frequency, by the relation ω = 2πν. Furthermore, in
writing the time and space variation of the field in terms
of the complex exponential, it is understood, but not
written, throughout this chapter that when a field is to
be evaluated (e.g., for measurement) the only physical
meanengful part of this complex expression is the real

part. Thus, if we denote a real measurable field by ε

and we wish to relate this to the theoretically derived
field �E , which is given by an expression of the form of
Equation 148, then

ε = Re[ �E]. (150)

The advantage of this approach is that expressions
involving the exponential of a complex quantity are
more readily manipulated than the equivalent expres-
sions involving sine and cosine. In next we will de-
rive expressions for the field components in planar and
cylindrical geometries before studying the solutions for
guided waves in planar and cylindrical waveguides (see
also [298]).

3.2.1. Planar geometry
The expression �∇x in rectangular Cartesian coordinates
is

�∇ × �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
xAyAzA

∣∣∣∣∣∣∣∣
, (151)

where �i , �j , �k are unit vectors in the x, y, z directions.
Thus from Equation 142 we obtain for the x directed
component of �∇x �E

(
∂z E

∂y
−∂y E

∂z

)
= −µµ0

∂x Hx

∂t
. (152)

Now we can write similar equations for ∂y H/

∂t ; ∂z H/∂t ; ∂x E/∂t ; ∂y E/∂t and ∂z E/∂t . If then sub-
stitute the field expressions of Equations 148 and
149 into these expressions, we obtain the following
results:

∂z E

∂y
+ i zky E = −iµµ0ω

x H, (153)

i zkx E + ∂z E

∂x
= iµµ0ω

y H, (154)

∂y E

∂x
− ∂x E

∂y
= −iµµ0ω

z H, (155)

∂z H

∂y
+ i zky H = −iεε0ω

x E, (156)

−i zkx H − ∂z H

∂x
= iεε0ω

y E, (157)

∂y H

∂x
− ∂x H

∂y
= iεε0ω

z E . (158)

Analysis of planar structures will be restricted to in-
finite films that lie in the y–z plane. Thus, in addition
to the assumption that the fields have the z dependence
already postulated, it can further assume that the partial
derivative with respect to y vanishes (hereafter ∂/∂y =
0) for an infinite plane wave traveling in the z direction.
With this assumption the above equations simplify and
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demonstrate a fundamental relationship about the fields
in such a structure. Indicated relations have forms:

i zky E = −iµµ0ω
x H (TE group), (159)

i zkx E + ∂z E

∂x
= iµµ0ω

y H (TM group), (160)

∂y E

∂x
= −iµµ0ω

z H (TE group), (161)

i zky H = iεε0ω
x E (TM group), (162)

−i zkx H − ∂z H

∂x
= iεε0ω

y E (TE group), (163)

∂y H

∂x
= iεε0ω

z E (TM group). (164)

We can see that the fields have now split into two
separate groups, namely, y E , x H and z H are coupled
and y H , x E and z E are also coupled. The guided waves
formed by the first group are described as TE modes
(for transverse electric), and the latter are known as TM
modes (for transverse magnetic). We can now use the
above relations to derive simpler expressions for the
transverse field components in terms of the z E and z H
components only e.g., eliminate y H between Equations
160, 162 and 164 to obtain a relation for x E . This yeilds
the following

x E =
( −i zk

εε0µµ0ω2 − zk2

)
∂z E

∂x
, (165)

y E =
( −iωµµ0

εε0µµ0ω2 − zk2

)
∂z H

∂x
, (166)

x H =
( −i zk

εε0µµ0ω2 − zk2

)
∂z H

∂x
, (167)

y H =
( −iωεε0

εε0µµ0ω2 − zk2

)
∂z E

∂x
, (168)

Substituting these expressions into Equations 159 to
164 yields two wave equations for propagation in the x
direction:

∂2z E

∂x2
− (ω2εε0µµ0 − zk2)z E = 0, (169)

∂2z H

∂x2
− (ω2εε0µµ0 − zk2)z H = 0. (170)

These indicate that for the transverse dependence
of the fields we should seek solutions of the form
exp(ixkx), where

xk2 = (ω2εε0µµ0 −z k2) = −(xγ )2. (171)

The significance of the variable xγ introduced here
will become apparent later. Notice that Equation 171
could have been obtained much more straightforwardly
by deriving the wave equation directly from Equations
142 to 147, setting ∂/∂y = 0, and substituting the
field Equations 148–149. However, that route would
not have yielded detailed interrelationship between the
vector components of the field that we will need for

finding the conditions for guided waves. In conclusion,
derived relationships between the vector components of
the fields for a planar structure lying in the y–z plane,
with a wave propagating in the z direction are sum-
marized in Equations 159 to 164. In addition we have
shown that fields in such a structure take the general
form

�E = �E(x) exp i(ωt − zkz ± xkx), (172)

�H = �H (x) exp i(ωt − zkz ± xkx), (173)

xk2 = ω2εε0µµ0 − zk2
, (174)

n2k2
0 = ω2εε0µµ0. (175)

3.2.2. Cylindrical geometry
We now repeat the analysis of Section 3.2.1 but in cylin-
drical polar coordinates, since these are more appropri-
ate to the analysis of optical fiber guides. The coordi-
nates x , y and z are now replaced by r , φ and z. These
are related to the coordinates as follows:

x = r cos φ, (176)

y = r sin φ, (177)

z = z. (178)

Since we are still concerned with a structure that is
expected to guide waves in the z direction, we should
postulated fields of the form

�E = �E(r, φ) exp i(ωt − zkz), (179)

�H = �H (r, φ) exp i(ωt − zkz). (180)

The relation for �∇ × �A in polar coordinates is as
follows:

�∇ × �A =

∣∣∣∣∣∣∣
�r
r φ

�k
r

∂
∂r

∂
∂φ

∂
∂z

r ArφAzA

∣∣∣∣∣∣∣ , (181)

where �k is the unit vector in the z direction. We will now
derive the expressions for the field components by use
of Maxwell Equations 142–147. We obtain the set of re-
lations equivalent to equations in Cartesian coordinates
for the planar case:

1

r

[
∂z E

∂φ
+ i zk(rφ E)

]
= −iµµ0ω

r H, (182)

i zkr E + ∂z E

∂r
= iµµ0ω

φ H, (183)

1

r

[
r
∂φ E

∂r
− ∂ r E

∂φ

]
= −iµµ0ω

z H, (184)

1

r

[
∂z H

∂φ
+ i zk(rφ H )

]
= iεε0ω

r E, (185)

1

r

[
r
∂φ H

∂r
− ∂ r H

∂φ

]
= iεε0ω

z E . (186)
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Solving these system of equations, we obtain expres-
sions for the r and φ components only in terms of the
z components:

r E = −i

Tk2

[z

k
∂z E

∂r
+ µµ0ω

1

r

∂z H

∂φ

]
, (187)

φ E = i

Tk2

[ zk

r

∂z E

∂φ
− µµ0ω

1

r

∂z H

∂r

]
, (188)

r H = −i

Tk2

[z

k
∂z H

∂r
− εε0ω

1

r

∂z E

∂φ

]
, (189)

φ H = −i

Tk2

[ zk

r

∂z H

∂φ
+ εε0ω

∂z E

∂r

]
, (190)

Tk2 = ω2εε0µµ0 − zk2 = n2k2
0 − zk2. (191)

Here Tk is the total transverse component of the �k in
the waveguide.

3.2.3. The electromagnetic wave equation
Below we derive the standard derivation of the wave
equation. Moreover, we give the form of the Lapla-
cian operator for rectangular Cartesian and polar coor-
dinates. If we take the curl of the first Maxwell equation,
then we obtain:

�∇ × ( �∇ × �E) = −µµ0

[
�∇ × ∂ �H

∂t

]
. (193)

Differentiating Equation 143 with respect to time
yields

�∇ × ∂ �H
∂t

= εε0
∂2 �E
∂t2

. (194)

We then make use of the vector identity

�∇ × ( �∇ × �E) = −�∇( �∇ × �E) − �∇2 �E = −�∇2 �E (195)

since �∇ · �E = 0 (see also Equation 146). Then it follows
directly by substitution that

�∇2 �E = εε0µµ0
∂2 �E
∂t2

(196)

and likewise

�∇2 �H = εε0µµ0
∂2 �H
∂t2

. (197)

These equations are both of the general form

�∇2 �A = 1

V 2

∂2 �A
∂t2

, (198)

where V is the velocity of propagation (phase velocity)
of the wave in the medium. It follows as usually that

Vp = 1√
εε0µµ0

(199)

and that, for free space, we have the velocity of light,
c, given by

c = 1√
ε0µ0

. (200)

For planar waveguides, described by rectangular
Cartesian coordinates, or circular fibers, described by
cylindrical polar coordinates, the Laplacian operator
has the forms

∇2 A = ∂2 A

∂x2
+ ∂2 A

∂y2
+ ∂2 A

∂z2
, (201)

∇2 A = 1

r

∂

∂r

(
r
∂ A

∂r

)
+ 1

r2

∂2 A

∂φ2
+ ∂2 A

∂z2
. (202)

We should stressed here that the modes considered in
fiber optics are exact solution of Maxwell’s equations
(details see [292–294]).

3.3. Geometrical optics of fibers
As was noted above the mechanism of light propagation
along fibers as small as a few wavelength in diameter
can be understood almost entirely using the ray the-
ory and well-known principles of geometrical optics.
It is interesting to note that, even for smaller-diameter
dielectric cylinders, which act as waveguides, the geo-
metrical optical theory, with some modification, helps
in the understanding of the complex mechanisms. We
begin ray analysis of multimode optical waveguides
with the planar, or slab waveguide, which is the sim-
plest dielectric structure for illustrating the principles
involved, and has application in integrated optics [290,
291]. Since we can analyze its light transmission char-
acteristics in terms of a superposition of ray paths, it
is important to fully appreciate the behavior of individ-
ual rays. We will study the trajectories of rays within
planar waveguides, concentrating on those rays—the
bound rays—which propagate without loss of energy
on a nonabsorbing waveguide, and can, therefore prop-
agate arbitrarily large distances. The planar, or slab,
waveguide is illustrated in Fig. 67. It consists typically
of a core layer of thickness 2ρ sandwiched between two
layers which form the cladding. As explained in the in-
troduction, we assume, for simplicity, that the cladding
is unbounded The planes x = ±ρ are the core-cladding
interfaces. Since the waveguide extends indefinitely in
all directions orthogonal to the x-axis, the problem is
two dimensional [300]. The z-axis is located along the

Figure 67 Nomenclature and coordinares for describing planar wave-
guides. A representative graded profile varies over the core and is uniform
over cladding, assumed unbounded (after [292]).
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axis of the waveguide midway between interfaces. The
refractive-index profile n(x) in Fig. 67 can be uniform
or graded across the core, and assumes uniform value
ncl in the cladding. It is necessary that the core refrac-
tive index make some values greater than ncl for the
waveguide to have guidance properties. Furthermore,
we assume that the profile does not vary with z, so that
the waveguide is translationally invariant, or cylindri-
cally symmetric. The parameters defined in Fig. 67 can
be combined with the free-space wavelength λ of the
light propagating along the waveguide to form a single
dimensionless parameter V , known as the waveguide
parameter, or waveguide frequency. If nco is the max-
imum value of n(x), which need not conduct with the
on-axis value n(0), then it will define

V = 2πρ

λ

(
n2

co−n2
cl

)1/2
. (203)

The ray theory considered here is restricted to mul-
timode waveguides i.e., waveguides satisfying V � 1.
The step-index planar waveguide, according to Fig. 68,
has the refractive-index profile defined by

n(x) = nco, −ρ < x < ρ;
(204)

n(x) = ncl, |x | > ρ,

where nco and ncl are constants and nco > ncl. One of
the most important problems is to determine the con-
ditions necessary for a ray to be bound, i.e., the ray
propagates along the nonabsorbing waveguide without
loss of power.

Propagating within the uniform core of the step-index
waveguide of Fig. 68 is along straight lines. If a ray
originates at P on one interface and makes angle θz
with the waveguide axis, it will meet the opposite in-
terface at Q as shown in Fig. 68. The situation at Q
in more details is pictured in Fig. 69 reflection in this
situation is governed by Snell’s law [293, 300]. While

Figure 68 Propagation along a straight line between interfaces in the
core of a step-profile planar waveguide (after [292]).

Figure 69 Reflection at a planar interface unbounded regions of re-
fractive indices nco and ncl, showing (a) total internal reflection and
(b) partial reflection and refraction (after [292]).

these laws are usually expressed in terms of angles rel-
ative to the normal QN, we following [292] prefer to
retain the complementary angle θz. Thus, in terms of
complementary angles, the incident ray at Q is totally
internally reflected if 0 % θz ≺ θc, and is partly refracted
if θc ≺ θz % π/2, where θc is the complement of the
critical angle, defined by [292]

θc = cos−1
[

ncl

nco

]
= sin−1

[
1− n2

cl

n2
co

]1/2

. (205)

In the first case, Fig. 115a shows the reflected ray
leaving the interface at the same angle θz as the incident
ray, while in the second case (see Fig. 69b) shows that
the ray bifurcates, part of it being reflected at angle
θz and part of it being transmitted into the cladding at
angle θt to the interface, which satisfies Snell’s law

nco cos θz = ncl cos θt. (206)

Only total internal reflection returns all the ray power,
i.e., the energy flowing along the ray, back into the core
medium. A ray is reflected from the interface back into
the core at angle θz regardless of whether partial or total
reflection occur. If we repeat this procedure at succes-
sive reflections from the interfaces (see Fig. 70), in such
way we construct the zig-zag paths, or trajectories. Path
depicted in Fig 116a is a ray that is totally reflected at
every reflection. We refer to this as a bound ray, since
its path is entirely confined within the core. Path (see
Fig. 70b) is for a ray that is partly reflected at each reflec-
tion. We refer to this as a refracting ray. The rays may
be categorized by the value of θz according to [292]

Bound rays : 0 % θz ≺ θc, (207a)

Refracting rays : θc % θz % π/2. (207b)

Since the power of a bound ray is totally reflected
back into the core at every reflection, the ray can prop-
agate indefinitely without any loss of power. A refract-
ing ray loses a fraction of its power at each reflection
and therefore attenuates as it propagates.

As was shown in whole raw of textbooks (see, e.g.
[292–298]), it is useful to introduce parameters that
characterize ray propagation, as it is these parameters,
rather than the spatial dependence of the ray path, that
are important. As can be seen from Fig. 71 the ray
trajectory is fully characterized once the angle θz is

Figure 70 Zig-zag paths within the core of a step-profile planar waveg-
uide for (a) bound rays and (b) refracting rays (after [292]).
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Figure 71 Path length and ray half-period zp for a ray in the core of a
step-profile planar waveguide (after [292]).

prescribed. We define the path length Lp between suc-
cessive reflections to be the distance PQ. According
geometry picture we have

Lp = 2ρ

sin θz
= 2ρnco(

n2
co−β̄2

)1/2 , (208)

where β̄ = nco cos θz = ncl cos θt is a ray invariant. For
the ray transit time below, we require the optical path
length L0. In a homogeneous medium this is given by
the product of path length and refractive index:

L0 = ncoLp = 2ρnco

sin θz
= 2ρn2

co(
n2

co−β̄2
)1/2 , (209)

A quantity which will appear frequently in attenu-
ation problems is the ray half-period zp. This is dis-
tance between successive reflections , mesured along
the waveguide axis:

zp = 2ρ

tan θz
= Lp cos θz = 2ρβ̄(

n2
co−β̄2

)1/2 . (210)

Closely related is the number of reflection N per unit
length of the waveguide, which is the reciprocal of the
ray half-period. Hence

N = 1

zp
= tan θz

2ρ.
. (211)

It is clear from these definitions that over arbitrary
distance z along the waveguide, the accumulated path
length, optical path length and number of reflections
are given proportionally by

z

zp
Lp;

z

zp
L0; Nz = z

zp
, (212)

respectively. These parameters are indicated in
Table I-1 of [292]).

The most important quantity required to describe
pulse spreading is the ray transit time t . This is the time
a ray takes to propagate distance z along the waveguide,
following the the zig-zag ray path (see also Fig. 70). The
velocity of light vg in fiber along the path is given by
[300]

vg = c/nco, (213)

where c is the fre-space speed of light. The transit time
describes the following relation:

t = z

zp

Lp

vg
= zL0

zpc
= zn2

co

cβ̄
= znco

c cos θz
, (214)

so that the greater θz, the longer the transit time.
We can account for material dispersion, which occurs

when the refractive index varies with the wavelength of
light λ, i.e., nco = nco (λ). This requires more sophisti-
cated reasoning relying on treating a ray as if it were a
plane wave in local regions. Ray energy propagates at
the group velocity vg, which is given by Equation 213
in a dispersionless medium. but, allowing for material
dispersion, it has the more general form [299]

vg = c

[
nco(λ)−λ

dnco(λ)

dλ

]−1

. (215)

It is convenient to introduce the group index ng, de-
scribed by

ng = nco(λ) − λ
dnco (λ)

dλ
, (216)

in which case, the transit time is expressible as

t = zng

c cos θz
= zngnco

cβ̄
, (217)

and varies with both θz and λ.
Early we establish the basic concepts for the ray anal-

ysis of planar waveguides. Now we extend the analysis
to optical fibers, which are used for high-capacity com-
munication over long distances. As far as ray tracing
is concerned, the only difference between fibers and
planar waveguides is the introduction of the third di-
mension. Thus, although the ray concepts are the same
as early, the analysis and resulting expression are gen-
erally more complicated because of the fiber geometry
[297]. Nevertheless, one of the important results of fiber
optics shows that the ray transit times for step and clad
power-law profile fibers of both circular and noncir-
cular are identical to those of the corresponding planar
waveguides. If this remarkable simplification is accept-
able without proof, then pulse spreading in such fibers
can be studied directly. An optical fiber is illustrated in
Fig. 72. Unless otherwise stated, the core is assumed

Figure 72 Nomenclature for describing circular fibers. Cartesian coor-
dinates x , y, z and cylindrical coordinates r , φ, z are oriented so that
the z-axis lies along the fiber axis. A representative graded profile varies
over the core and is uniform over the cladding, assumed unbounded (after
[292]).
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to have a circularly symmetric cross-section of radius
ρ, surrounded by the cladding, which, for simplicity
is assumed unbounded. The core-cladding interface is
the cylindrical surface r = ρ. Over the core, the ax-
isymmetric refractive-index profile n(r ) is either uni-
form or graded, and it takes the uniform value ncl in
the cladding. The dimensionless parameter V of Equa-
tion 203 also applies to fibers, and will br referred as
the fiber parameter, where ρ is the core radius. The
quantity (n2

co − n2
cl)

1/2 is often referred to as the nu-
merical aperture of the fiber, while a related expression
[n2

co(r )−n2
cl]

1/2 is sometimes called the local numerical
aperture (details see [297, 298]).

3.4. Waveguide mode propagation
In a light pipe electromagnetic energy is propagated
down the pipe by reflection from the walls of the struc-
ture. If the transverse dimensions are comparable to
the wavelength of the light only certain field distribu-
tions (modes) will satisfy Maxwells equations and the
boundary conditions. In this case the light pipe is more
appropriately considered as a waveguide. Even in very
large structures there are so many of them, their number
increasing as the area, that in most cases a geometrical
optics description is more fruitful (see above).

As is well-known, the distinction between metallic
and dielectric waveguides is in the reflection mecha-
nism responsible for confining the energy. The metallic
guide does so by reflection from a good conductor at
the boundary. In the dielectric waveguide, this is ac-
complished by total internal reflection, which is gotten
by having the central dielectric made of a material of
higher index of refraction than the surrounding dielec-
tric. The two regions will henceforth be referred to as
the core and cladding. In a metallic guide there are
two sets of solutions, the transverse electric and trans-
verse magnetic modes. In the dielectric guide all but
the cylindrically symmetric modes TE0m and TM0m are
hybrid, i.e., they have both electric and magnetic z com-
ponents [301–303]. In general, one would expect two
sets of such hybrid modes, because the boundary condi-
tions give a characteristic equation which is quadratic in
the Bessel functions describing the field in the central
dielectric (details see [293, 297, 298] and references
therein).

The cylindrical dielectric waveguide consists of a
core of high refractive index nco and radius a surrounded
by a cladding of lower refractive index ncl. Let the
cladding material of index ncl extend to infinity. We
shall use both cartesian (x, y) and cylindrical polar co-
ordinates (r , φ). The propagation constant β of any
mode of this fiber is limited within the interval nco ≥
β ≥ nclk, where k = 2π/λ is the wavenumber in free
space. If we define parameters

u = a
(
k2n2

co − β
)1/2

, (218)

w = a
(
β − k2n2

cl

)1/2
, (219)

the mode field can be expressed by Bessel function
J (ur/a) inside the core and modified Hankel function

K (wr/a) outside the core [293, 302]. The quadratic
summation

v2 = u2 + w2 (220)

leads to a third parameter

v = ak
(
n2

co − n2
cl

)1/2
, (221)

which can be considered as a normalized frequency. By
matching the fields at the core-cladding interface, we
obtain characteristic functions u(v) or w(v) for every
mode; the propagation constant and all other parameters
of interest can be derived from these functions. For
weak guidance, we have

� = (nco − ncl)/ncl � 1. (222)

In this case, we can construct modes whose trans-
verse field is essentially polarized in one direction. Be-
low we postulate transverse field components (see also
[297])

y E = z H = Z0/nco

= El[Jl(ur/a)/J l(u)] cos l φ (223a)
y E = z H = Z0/ncl

= El[Kl(wr/a)/K l(w)] cos l φ. (223b)

Here, as in following, the (a) holds for the core and
the (b) for the cladding; Z0 is the plane wave impedance
in vacuum, and El the electrical field strength at the in-
terface. Fig. 73b–e illustrate the case l = 1. Since we

Figure 73 Sketch of the fiber cross-section and the four possible distri-
butions of LPl1 (after [303]).
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have the freedom of choosing sin lφ or cos lφ in Equa-
tion 223 and two orthogonal states of polarization, we
can construct a set of four modes for every l as long as
l > 0. For l = 0, we have only a set of two modes polar-
ized orthogonally with respect to each other. The longi-
tudinal components can be obtained from the equations
[304]

z E = i Z0

k

[
1

n2
co

]
∂z H

∂y
, (224a)

z E = i Z0

k

[
1

n2
cl

]
∂z H

∂y
, (224b)

and

z H = (i/k Z0)(∂y E/∂x). (224c)

By introducing (446), we have

z E = −i E l

2ka

[
u

nco

Jl+1(ur/a)

Jl(u)
sin(l + 1)φ

+ u

nco

Jl−1(ur/a)

Jl(u)
sin(l − 1)φ

]
, (225a)

z E = −i E l

2ka

[
w

ncl

Kl+1(wr/a)

Kl(w)
sin(l + 1)φ

+ w

ncl

Kl−1(wr/a)

Kl(w)
sin(l − 1)φ

]
, (225b)

z H = −i E l

2k Z0a

[
u

Jl+1(ur/a)

Jl(u)
cos(l + 1)φ

− u
Jl−1(ur/a)

Jl(u)
cos(l − 1)φ

]
, (225c)

z H = −i E l

2k Z0a

[
w

Kl+1(wr/a)

Kl(w)
cos(l + 1)φ

+ w
Kl−1(wr/a)

Kl(w)
cos(l − 1)φ

]
. (225d)

For small �, the longitudinal components [Equa-
tions 225a–d] are small compared to the transverse
components. The factors involved are u/ak and w/ak
which because of Equations 218 and 219 are both
of the order �1/2. Repeated differentiation of Equa-
tions 225a–d) leads to transverse components which are
not identical with the postulated field [Equation 222]
but small of order � compared to it. We shall neglect
these fields in the following. It is this approximation
that determines the accuracy of assumption of linearly
polarized modes (see also [298]).

To match the fields at the interface let us write Equa-
tion 222 in terms of cylindrical components. We then
have

φ E = El

2
[Jl(ur/a)/J l(u)][cos(l + 1)φ

+ cos(l − 1)φ], (226a)

φ E = El

2
[Kl(wr/a)/J l(w)][cos(l + 1)φ

+ cos(l − 1)φ], (226b)

Figure 74 The regions of the parameter u for modes of order l = 0; 1
(after [298]).

φ H = − El

2Z0
[nco Jl(ur/a)/J l(u)][sin(l + 1)φ

− sin(l − 1)φ], (226c)

φ H = − El

2Z0
[ncl Kl(wr/a)/J l(w)][sin(l + 1)φ

− sin(l − 1)φ], (226d)

If we set nco = ncl in Equations 226–227 and use
the recurrence relations for Jl and Kl, we can match all
tangential field components at the interface by the one
equation

u[Jl−1(u)/J l(u)] = −w[Kl−1(w)/K l(w)]. (227)

This is the characteristic equation for the linearly
polarized (LP) modes. Setting w = 0 yields the cutoff
values Jl−1(u) = 0. For l = 0, this includes the roots of
the Bessel function J−1 (u) = −J1(u), which we shall
count so as to include J1(0) = 0 as the first root. In such
way Gloge [303] obtain the cutoff values indicated in
Fig. 74 for LP0m and LP1m. In the limit of w → ∞ we
have J1(0) = 0. Thus, the solution for u are between the
zeros of Jl−1(u) and Jl (u). Every solution is associated
with one set of modes designed LPlm. For l ≥ 1, each
set composes four modes.

The accuracy of the characteristic equation can be
improved if we retain ncl and nco as different in Equa-
tions 216 and 217. In this case, as was shown by Gloge
[303], terms with (l + 1)φ and (l − 1)φ satisfy two
different characteristic equations:

(u/nco)[Jl±1(u)/J l(u)]

= ±(w/ncl)[Kl±1(w)/K l(w)] (228)

By using the recurrence relations for Jl and Kl, Gloge
have shown that these two equations converge into
Equation 227 for nco = ncl. For ncl �= nco, this degen-
eracy ceases to exist; each mode LPlm breaks up into
modes with terms (l + 1)φ, which can be identified as
HEl+1,m or TEm and TMm (see also [292, 302]). A more
rigorous proof of this results is given below.

As mentioned above, the problem of the dielectric
cylinder with sharp index step can be solved exactly.
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Using above done the nomenclature, one can write the
exact characteristic equation in the form

(Q − D − 2�{[(l ± 1)/ω2] ± [Kl(ω)/K l±1(ω)]})
× (Q − D) = Q2[1 − 2�(u2/v2)], (229)

where

Q = (l ± 1)(v2/u2w2). (230)

D = [Jl(u)/u J l±1(u)] ∓ [Kl(w)/wK l±1(w)], (231)

and

2� = (
n2

co−n2
cl

)
/n2

co. (232)

The upper sign holds for HEl+1 modes and the lower
sign for EHl−1, TM and TE. Equation 232 agrees with
Equation 222 in the case of small index differences. If
� is set to zero in Equation 229, we find D = 0; and
Equation 231 then becomes the simplified characteris-
tic Equation 227. For small �, D is also small. Now
we simplify Equation 220 to the extent that we retain
terms linear in � or D. This result in

D = �{Q(u2/v2)−[(l ± 1)/w2]

∓ [Kl(w)/wK l±1(w)]} (231)

and with Equation 230

D = ∓�[Kl(w)/wK l±1(w)]. (232)

By introducing this into Equation 231 and inserting
Equation 232, we find

(u/nco)[Jl±1(u)/J l(u)]

= ±(w/ncl)[Kl±1(w)/K l(w)] (233)

This is exactly the characteristic Equation 228.
Evidently the guided wave traveling along the cir-

cular guide carries energy. The respective amounts are
readily calculated using the Poynting vector to estimate
the energy flow [298]. The Poynting vector in axial di-
rection can be calculated from the cross product of the
transverse fields given in Equation 222. Integration over
the cross-section of core and cladding leads to tabulated
integrals (see also [298, 301, 305]); the results are

Pco = [1 + (w2/u2)(1/k)](πa2/2)(Z0/nco)E2
l (234)

and

Pcl = [(1/k)−1](πa2/2)(Z0/ncl)E2
l (235)

for the power flow in core and cladding, respectively.
If we ignore the small difference between nco and ncl,
the total power in a certain mode becomes

P = Pco + Pcl

= (v2/u2)(1/k)(πa2/2)(Z0/nco)E2
l . (236)

Practical fibers have small heat and scattering losses
which cause significant attenuation over long distances.
In general, these losses are attributable to certain parts
of the fiber and proportional to the power propagating in
this part. For considerations of this kind, it is convenient
to use the power fractions

Pco/P = 1 − (u2/v2)(1 − k) (237)

and

Pcl/P = (u2/v2)(1 − k). (238)

As expected, the mode power is concentration in the
core far away from cutoff. As cutoff is approached, the
power of lower order modes (l = 0, 1) withdraws into
the cladding, whereas modes with l ≥ 2 maintain a fixed
ratio of (l−1) between the power in core and cladding at
cutoff. The power density is related to the mode power
P by

p(r ) = k
u2

v2

2P

πa2

[
J 2

l (ur/a)/J 2
l (u)

]
cos2 l φ (239a)

p(r ) = k
u2

v2

2P

πa2

[
K 2

l (wr/a)/K 2
l (w)

]
cos2 l φ. (239b)

By averaging over φ at r = a, we obtain the mean
density

p̄(r ) = k(u2/v2)
P

πa2

[
J 2

l (ur/a)/J 2
l (u)

]
(240a)

p̄(r ) = k(u2/v2)
P

πa2

[
K 2

l (wr/a)/K 2
l (w)

]
(240b)

At the core-cladding interface, we have r = a and

p̄(a) = k(u2/v2)
P

πa2
. (241)

The normalized density πa2 p̄(a)/P is plotted in
Fig. 75. For modes of order l = 0, 1 this density ap-
proaches zero both at cutoff and far away from it, hav-
ing a maximum in between. Modes with l ≥ 2 have
p̄(a) = [1−(1/ l)] P/πa2 at cutoff. For r � a/w, we
can replace the K functions in Equation 241 by their
approximation for large argument and obtain

p̄(r ) ≈ k(u2/v2)(P/πar ) exp[−2w(r − a)/a],

for r � a, (242)

as long as w is not too small. The power density de-
creases exponentially with the distance from the inter-
face (see also [296]). It decreases sharply as cutoff is
approached and is zero at cutoff. For sufficiently small
w we may set u = v and replace the K functions in
Equation 241 by their approximation for small argu-
ment, obtaining

p̄(r ) ≈ kl(P/πa2)(a/r )l (243)
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Figure 75 Normalized power density at the core-cladding interface plotted vs v (after [294]).

for r > a, w = 0. This function describes the cutoff
power distribution in the cladding. It decreases with the
distance from the axis for all but the lowest azimuthal
order, whose cladding field is independent of the
radius.

3.5. Pulse spreading
The transmission of information along optical fibers is
normally achieved by sending out a sequence of pulses
of light energy. However, as an individual pulse prop-
agates, it spreads out, due to the dispersive properties
of the fiber. Clearly if this spread becomes sufficiently
large the pulse will overlap with adjacent pulses, lead-
ing to a decrease in information-carrying capacity be-
cause of the loss of resolution at the end of the fiber.

Below a formalism is presented for describing the
propagation characteristics of graded-index, multi-
mode fibers. The index profiles of cylindrically sym-
metric waveguides can be conveniently specified by the
equation

n2(r ) = n2
1[1 − 2� f (r/a)], (244)

where n(r ) is the refractive index of the waveguide as a
function of distance r from the axis, and n1 is the index
along the axis. The profile function f (r/a) is defined
so that it is zero on axis

f (0) = 0 (245)

and becomes equal to unity at the core-cladding bound-
ary located at r = a,

f (r/a) = 1, for r ≥ a. (246)

The cladding index n2 (= ncl) is thus defined to be

n2 = n1(1 − 2�)1/2. (247)

The quantity � provides a useful measure of the core-
cladding index difference. From Equation 247 one finds

� = (
n2

1−n2
2

)/
2n2

1. (248)

Each mode of the waveguide can be specified by
the pair of integers µ and ν, which, respectively spec-
ify the number of radial nodes and azimuthal nodes
in the transverse electromagnetic fields of that mode.
The propagation constant βµν of each mode depends
explicitly on all quantities that specify the waveguide
structure and on the wavelength λ of the propagating
light (see also [303]),

βµν = βµν(n1,�, a,λ). (249)

The propagation constants depend as usually on the
wavelength explicitly and implicitly through the wave-
length variation of n1 and �. Although the index profile
f (r/a) may also vary slightly with wavelength, such
effects will not considered.

For analyzing pulse transmission, one is concerned
with the group delay time per unit length for the mode
µ, ν. This is given

τµν = dβµν

dω
. (250)

If the free space propagation constant, k = 2π/λ, is
introduced, Equation 250 can be rewritten as

τµν = 1

c

dβµν

dk
. (251)
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If the fiber is excited by an impulse excitation and
if there is no mode coupling, the impulse response,
P(t, z, λ), for spectral component λ at position z can
be written as

P(t, z, λ) =
∑

Pµν(λ, z)δ[t − zτµν(λ)], (252)

where the summation extends over all guided modes.
The distribution functions Pµν(λ, z) describe the power
in mode µ, ν as a function of wavelength and position.
At z = 0 the distribution function will be determined
by the spatial, angular, and spectral distribution of the
source, as well as by the source-fiber coupling configu-
ration. As the impulse propagates along the waveguide
the power in each mode will change according to the
attenuation occurring in that mode. Further it will be
assumed that no mode coupling occurs.

In general, only the total power integrated over all
source wavelengths will be detected. Hence, the quan-
tity of practical interest is the full impulse response

P(t, z) =
∫ ∞

0
dλP(t, z, λ). (253)

The propagation characteristics of the fiber can be
described by specifying the moments Mn(z) of the full
impulse response. These moments are defined by

Mn(z) =
∫ ∞

0
dt tn P(t, z). (254)

In some situations, knowledge of only the first few
moments is sufficient for system design considerations.
If this is the case, the required amount of pulse broad-
ening information is reduced considerably. Equations
252–254 can be combined to yield

Mn(z) = zn
∫ ∞

0
dλ

∑
Pµν(λ, z)τ n

µν(λ). (255)

The predominant wavelength dependence of the dis-
tribution function Pµν(λ, z) is determined by the spec-
tral distribution S(λ) of the source. Even for the rel-
atively broad LED sources, S(λ) is a sharply peaked
function whose rms width, at most, a few percent of the
mean source wavelength. One can rhus define a new
distribution function pµν(λ, z) by the expression

Pµν(λ, z) = S(λ)pµν(λ, z), (256)

where pµν(λ, z) is a slowly varying function of λ over
the range where S(λ) is nonzero.

Proceedings with the analysis, it can be assumed that
S(λ) is normalized so that∫ ∞

0
dλS(λ) = 1. (257)

Consequently, the mean source wavelength λ0 is
given by

λ0 =
∫ ∞

0
dλλS(λ), (258)

and the root mean square (rms) spectral width of the
source σs is given by

σs =
[ ∫ ∞

0
dλ(λ − λ0)2S(λ)

]1/2

. (259)

The influence of the source spectral distribution on
the fiber’s transmission properties can be studied by
expanding the delay per unit length of the µ, νth mode,
τµν(λ), in a Taylor series about λ0. Substituting this
series into Equation 255 and using Equation 256 give

Mn(z) = zn
∫ ∞

0
dλS(λ)

∑
µν

p(z)
{
τ n
µν(λ0)

+ n(λ − λ0)τ n−1
µν (λ0)τ ′

µν(λ0)

+ n(λ − λ0)2/2τ n−2
µν (λ0)τ ′′

µν(λ0) + }
. (260)

Treating pµν as independent of λ, Equations 255–259
can be used to integrate Equation 260 to find that

Mn(z) = zn
∑

pµν(z)τ n
µν(λ0) + σ 2

s

/(
2λ2

0

)
× {

nτ n−1
µν (λ0)λ2

0τ
′′
µν(λ0)

+ n(n − 1)τ n−2
µν (λ0)[λ0τ

′
µν(λ0)]2})

+ 0
(
σ 3

s /λ3
0

)
. (261)

The small size of σs/λ0 allows the neglect of higher
order terms. The following quantities are most useful
in describing the energy distribution at z. By definition,
the total power arriving at z is given by

M0(z) =
∑

pµν(z), (262)

the mean delay time of the pulse τ (z) is given by

τ (z) = M1(z)/M0(z), (263)

and the rms pulse width σ (z) by

σ (z) = [M2(z)/M0(z) − τ 2(z)]1/2. (264)

Combinations of higher moments further describe
the power distribution, but the first three are the most
important. To simplify the notation required in the fol-
lowing expressions, the symbol 〈 〉 will be used to indi-
cate the average value of a quantity with respect to the
distribution pµν so, for example

〈A〉 ≡
∑

pµν(z)Aµν/M0. (265)

From Equations 252–255, the full pulse delay time
is found to be

τ (z) = z
[〈τ (λ0)〉 + σ 2

s

/(
2λ2

0

)〈
λ2

0τ
′′(λ0)

〉]
. (266)

For the purpose of specifying the fiber bandwidth for
digital systems, Personick [306] has shown that one is
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primarily concerned with the rms width σ (z). This is
given by

σ (z) = (
σ 2

intermodal + σ 2
intramodal

)1/2 + 0
(
σ 3

s /λ3
0

)
, (267)

where the definitions

σ 2
intermodal = z2{〈τ 2(λ0)〉 − 〈τ (λ0)〉2

+ σ 2
s

λ2
0

[
λ2

0τ
′′(λ0)τ (λ0)

− 〈
λ2

0τ
′′(λ0)

〉〈τ (λ0)〉]} (268)

σ 2
intramodal = z2 σ 2

s

λ2
0

〈[λ0τ
′(λ0)]2〉 (269)

have been introduced. We can see, that the square of
rms width has been separated into an intermodal and
an intramodal component. The intermodal term (262)
results from delay differences among the modes and
vanishes only if all delay differences vanish. This term
is found to contain a dominant term and a small cor-
rection that is proportional to the square of the relative
source spectral width (σs/λ0). For the refractive index
profiles considered below, this term is found to be negli-
gible. The intramodal term (269) represents an average
of the pulse broadening within each mode. It becomes
the only term present in the dispersion of a single-mode
waveguide. The intramodal dispersion arises from two
distinct effects, a pure material effect that corresponds
to the pulse broadening in bulk material and waveg-
uide effect. This separation can be made by writing the
modal delay time in the form

τµν = N1/c + δτµν, (270)

where N1 is material group index,

N1 = n1λdn1/dλ, (271)

and δτµν represents the correction to this introduced
by the waveguide structure. The derivative τ ′

µν can be
written as

τ ′
µν = −λn′′

1 + δτ ′
µν. (272)

Since the intramodal contribution to the total rms
pulse width is obtained by squaring and averaging over
Equation 273, one can write the intramodal contribu-
tions as

σ 2
intramodal = z2 σ 2

s

λ2
0

[(
λ2

0n′′
1

)2 − 2λ2
0n′′

1〈λ0δτ
′〉

+ 〈(λ0δτ
′)2〉]. (273)

Hence, the total intramodal contribution has a pure
material component, a waveguide component, and a
mixed component arising from the cross product. For
graded-index waveguides the derivative of the inter-
modal delay differences δτ ′

µν is also small, therefore

the intramodal contribution is then dominated by the
pure material term

σintramodal ≈ σs

λ0

(
λ2

0n′′
1

)
. (274)

This quantity represents the ultimate lower limit of
the pulse broadening. According to [307] the meaning
of σintermodal has next expression

σintermodal

= L N 1�

2c

α

α + 1

(
α + 2

3α + 2

)1/2

×
[

C2
1 + 4C1C2�(α + 1)

2α + 1
+ 4�2C2

2 (2α + 2)2

(5α + 2)(3α + 2)

]1/2

,

(275)

where

C1 = α − 2 − ε

α + 2
, (276)

and

C2 = 3α − 2 − 2ε

2(α + 2)
. (277)

As was shown in [308], the minimum of the inter-
modal rms width occurs for (see also [298])

αc = 2 + ε − �
(4 + ε)(3 + ε)

(5 + 2ε)
. (278)

Here ε = −2n1λ�′
N�

and α = 2 + ε. The last term on
the right of Equation 278 represents a small correction
to the optimal α. This correction results from a partial
cancellation that occurs between the two mode depen-
dent terms, if α − 2 − ε is of order �. The size of this
correction changes as the distribution of power among
the modes varies.

Fig. 76A shows the fitted values of n1(λ) and n2(λ)
in the range from 0.5 µm to 1.1 µm. Figs 76B and
76C, respectively, show the first and second derivatives
of the refractive indices of these two glasses. Fig. 77
shows the values of � and λ�′ determined from the
data. It can be observed in Fig. 77A that, over the range
of wavelength shown, � decreases by about 15%. From
the index data on Figs 76 and 77, ε(λ) can be calculated,
and a plot of αc vs. λ is shown in Fig. 78. The value of
αc minimizing the intermodal rms pulse width departs
significantly from the optimal profile α = 2(1 − 6�/5),
which is predicted if the effect of material dispersion is
ignored. The optimal α varies quite strongly with wave-
length, decreasing from about 2.5 at 500 nm to 2.2 at
1000 nm. A waveguide with a given index profile α is
thus predicted to show different pulse widths accord-
ing to the source wavelength used. This wavelength-
dependent pulse broadening provides a tool for observ-
ing these effects and is discussed at length in [307].

According to [307] the delay time can be used to eval-
uateλτ ′

n , which is required for predicting the intramodal
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Figure 76 Refractive index data for 3.4 wt% TiO2 doped silica (n2) and
fused silica (n1) are shown for (A) Sellmeir fit to the refractive index,
(B)—λdn/dλ, (C)—λ2d2n/dλ2 (after [307]).

Figure 77 The index difference � determined from the data of Fig. 122A
is shown in (A), and the derivative λd�/dλ in (B) (after [307]).

Figure 78 The α value that minimizes the pulse broadening as a function
of wavelength (after [307]).

broadening has next form

λτ ′
n = −λ2n′′

1 + N1�

(
α − 2 − ε

α + 2

)

×
(

2α

α + 2

)(
n

N

)α/α + 2

. (279)

Since λ2n′′
1 and � are the same order of magnitude,

both terms contribute to λn′
n for large α (but with op-

posite signs). For α near αc, the pure material term
in Equation 273 dominates. This reflect the fact that
when the intermodal delay differences are small, the
derivatives of these differences are also small. Assum-
ing equal excitation of the modes, one can perform the
summation over all modes required by Equation 259
and find that

σintramodal

= σλ

λ

[
(−λ2n′′

1)2 − 2λ2n′′
1(N1�)

×
(

α − 2 − ε

α + 2

)(
2α

2α + 2

)

+ (N1�)2
(

α − 2 − ε

α + 2

)2( 2α

3α + 2

)]1/2

. (280)

The total rms pulse widths for α profiles can be pre-
dicted from Equations 275 and 280. In Fig. 79, this
rms pulse width is shown as a function of α for three
types of GaAs sources, all operating at λ = 0.9 µm,
but having differential spectral bandwidths. The three
curves correspond to an LED, an injection laser, and a
distributed-feedback laser having typical rms spectral
widths of 150 Å, 10 Å and 2 Å, respectively. The waveg-
uide is assumed to have n1(λ) and n2(λ) of Fig. 76 and
to propagate equal power in all modes. For compari-
son, a dashed curve represents the rms width predicted
if material dispersion and intramodal broadening are
ignored. We shoul add, that for the LED source, pulse
broadening of less than 1.5 ns/km can be achieved if α is
within 25% of the optimal value. For the injection laser,
an α within 5% of the optimal will give pulse widths
less than 0.2 ns/km, and for the distributed-feedback
laser, widths of 0.05 ns/km are predicted if 1% control
on α can be achieved.
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Figure 79 Assuming equal power in all modes, the rms pulse width is
shown as a function of α for three different sources, all operating at
0.9 µm. The sources are taken to be an LED, a gallium arsenide injec-
tion laser, and a distributed feedback laser having rms spectral widths of
150 Å, 10 Å and 2 Å, respectively. The dashed curve shows the pulse
width that would be predicted if al material dispersion effects were ne-
glected (after [298]).

In the preceding sections it was found that the α

value that minimizes the intermodal pulse dispersion
departs significantly from the parabolic profile and that
the magnitude of this departure depends on the wave-
length of the source. In Fig. 79, one sees that the cal-
culated rms pulse width depends very strongly on the
difference between the α of the waveguide and the opti-
mal α. In Fig. 80, the calculated rms width is shown as a
function of source wavelength for waveguides with in-
dex profiles in the range 1.5 ≤ α ≤ 2.9. For the purpose
of illustration, it was assumed [307] in these calculation
that the rms spectral width of the source is 2 Å. As is
known, for this range of α values both the intermodal
and intramodal contributions must be considered. The
wavelength dependence of the intermodal term depends
on the specific α value. For α ≺ 2.2, the intermodal
pulse width decreases as λ increases, because for these
α′s the difference |α − αc| decreases with λ. The op-
posite occurs for α ( 2.5, and the intermodal pulse
width increases with λ. For waveguides with 2.2 ≺ α ≺
2.5, the minimal intermodal broadening occurs at one
wavelength in the range 500 nm ≺ λ ≺ 1100 nm. As λ

is varied through this range, the intermodal broadening
decreases until the optimal wavelength is reached, and
thereafter it increases. The intramodal contribution to
the rms width is dominated by material dispersion. It
is largest at the shorter wavelength and decreases quite
rapidly with wavelength. For a source spectral width of
2 Å, the rms width decreases from 0.1 ns/km to 0.006 ns/
km between 500 nm and 1100 nm. The pulse width be-
havior shown in Fig. 80 reflects the combined effect of
intermodal and intramodal pulse broadening.

Figure 80 For a source with 2 Å spectral width, the rms pulse width is
shown as a function of wavelength for several different values of α (after
[307]).

3.6. Materials for optical fibers
The choice of materials to be used in the fabrication
of fibers is influenced by the need to satisfy simultane-
ously many requirements. Obviously the material must
be formable into a fine filament, transparent and avail-
able with two different refractive indices for core and
cladding, respectively. These requirements alone more
or less limit the field to plastics or glasses, although a
liquid has been used to form the core of a fiber drawn
from a hollow tube of glass. Many plastics are excluded
from further consideration because the presence of hy-
drogen in their structures give rise to very high losses
and because their molecular size leads to large scatter-
ing losses. And within the infinite number of possible
glasses, most are rule out by other consideration. To ap-
preciate this situation more fully, we need to examine in
more detail the physical mechanisms involved, partic-
ularly those controlling optical loss since most optical
communications systems require fibers of exception-
ally low attenuation at the optical carrier frequency.
Usually less than 20 dB/km is sought [309, 310].

Glasses are formed from fused mixtures of metal ox-
ides, sulfides or selenides. Because they are fused mix-
tures rather than fixed compounds with crystal struc-
tures, their compositions are infinitely variable within
certain regions of their respective phase diagrams, and
large numbers of different glasses are manufactured by
industry. Most of these fall into the category of oxide
glasses, since these are the optically transparent ones,
the sulfide and selenide glasses being used in the in-
frared region approximately 0.6 µm to 14 µm or more.

Of the oxide glasses, by far the most common are
silica (SiO2); sodium calcium silicates, frequently used
for plate and window glass; sodium borosilicates, often
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used for oven ware and chemical apparatus; and lead
silicates, which are the crystal glasses having relatively
high refractive indices and thus appearing “shiny”. Typ-
ical starting materials for these glasses are sodium
and calcium carbonates, boric oxide (B2O3) or boric
acid, silica (sand), and lead oxide. For the typical fiber
materials, new conditions arise, namely, the need for
very low loss, which means very high chemical purity,
so that the materials sources used are usually differ-
ent from those serving large scale industry. The struc-
ture of glasses is noticeably different from that of the
solids usually encountered in the electronic industry,
namely, crystals. In the latter the individual atoms are
well defined in space according to very precise and
repeated patterns, lying in exact three-dimensional lat-
tices. Glass, on other hand, consists of a loosely con-
nected network formed by groups, which can be added
to or modified by other components. For example, the
addition of sodium (a network modifier) tends to break
up the SiO2 network, as shown in Fig. 81, in a sodium
silicate glass. The result is less strongly bound than pure

Figure 81 Networks involving SiO2 groups, shown schematically in two
dimensions. (a) A regular SiO2 lattice (two-dimensional quartz crystal).
(b) The effect on the lattice of the addition of a network modifier (after
[298]).

Figure 82 Viscosity versus temperature for a number of glasses (after
[298]).

silica, and the melting temperature is thereby lowered.
Since B2O3 is also a network former like SiO2, a se-
ries of glasses such as sodium borates exist, paralleling
sodium silicates but having very much lower melting
temperatures since the B O bond is much weaker than
the Si O bond.

Fig. 82 shows viscosity-temperature curves for some
commonly manufactured glasses. Particularly note-
worth is the fact that viscosity of a pure silica glass
is much higher than that of multicomponent glasses at
the same temperature. Just as the viscosity of a glass is a
function of its composition, so too are the refractive in-
dex and the thermal expansion coefficient. Since there is
an infinity of glass compositions, full data are not avail-
able for all glasses; in fact, comprehensive data are re-
stricted to a few glass groups that have been extensively
studied because of large scale commercial applications.
The sodium calcium silicate (NCS) group is one such.
A second glass system of great current interest is the
sodium borosilicate (NBS) group of glasses. Another
group of glasses that may be of interest in fiber manufac-
ture is lead silicates. These are of potential interest since
they allow large refractive index differences to be ob-
tained between core and cladding glasses. For example,
a pair with indices of 1.5 and 1.65 showing a 10% index
difference can probably be obtained by using the highly
polarizable lead ions to dope the higher index material.
Fibers with such large index difference will be charac-
terized by a higher level of Rayleigh scattering from the
lead (of the order 10 dB/km, compared to 1 dB/km for
silica at 900 nm) and have not yet been produced with
very low loss (i.e., under 15 or 20 dB/km). But for many
short link systems applications these disadvantages are
more than offset by the large acceptance angle for such
a high index difference fiber. All these three groups of
glasses are of interest because they can be made by
nearly conventional glass melting techniques in large
quantities at low cost. They are formed by mixing the
appropriate powders and fusing them in a crucible to
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form a glass. But there is another group of materials,
as already noted, all based upon pure silica with small
additions of one or more other oxides.

3.6.1. Absorptive losses in glasses
Optical fiber choose to operate in one of two wavelength
bands, the GaAs device region from 800 to 900 nm
or the Nd laser region at 1.06 µm, with remote pos-
sibility of an extension to perhaps 1.2 or 1.3 µm us-
ing other semiconductor sources (see also [309, 310])
This choice is dictated by good physical reasons. Wave-
lengths shorter than about 600 to 650 nm are ruled out
because Rayleigh scattering in the glass becomes se-
vere and impurity absorption spilling over the band
edge absorption is a problem. Beyond about 1.3 µm the
first overtone of the OH stretching vibration appears at
1.4 µm, giving heavy absorption. Some spillover from
multiphonon bands from the glass constituents proba-
bly adds to this, and detectors become far less efficient
because the quantum energy hν rapidly approaches kT
under conditions at room temperature operation.

Five absorption mechanisms are of concern in a glass
that is considered for use in optical fibers. The first two
are associated with the basic glass constituents them-
selves, typically a combination of oxides of silicon,
sodium. boron, calcium, germanium and so on. The
glass has a band edge absorption somewhere in the ul-
traviolet (UV) region of the spectrum. Such absorption
is extremely intense; and although the wavelength of
interest for operation of a system is a considerable dis-
tance away, there has been serious debate as to whether
the tail of the band edge could provide a significant loss
mechanism (see also [311–316]).

Fig. 83 shows the losses of some fibers with very low
water contents made with different constituents in the

Figure 83 Losses versus wavelength of some low water content fibers showing the matrix influence on the infrared transmission (after [318]).

core by the chemical vapor deposition technique [317],
and in Fig. 84 the infrared spectra of some of these same
materials, showing the relative size and position of the
infrared absorptions, are presented. The work suggests
that GeO2 doping for the core is the most favorable
because of the longer wavelength at which the GeO2
stretching vibration occurs, and this leads to an estimate
[318] for the lowest loss for this type of fiber, at about
1.5 microns, of about 0.3 dB/km, as shown in Fig. 85.
Evidently, to obtain figures even remotely approaching
these, very low water contents must be achieved. The
remaining absorption mechanisms are all related to im-
purities or defects in the glass [314] and are therefore
not intrinsic. Besides that, a problem with most optical
fibers is to reduce the hydroxyl ion (OH) content to a
sufficiently low level, usually a few parts per million
(details see [298]).

3.6.2. Rayleigh scattering
The phenomena of Rayleigh scattering is well-known
to all of us as the mechanism responsible for blue sky.
It is scattering of light from microirregularities in the
dielectric medium through which the electromagnetic
wave is propagating. The physical scale of the irregu-
larities is of the order of one-tenth wavelength or less,
so that each irregularity acts as a point source for scat-
tered radiation. The resulting relation pattern from the
induced dipole is doughnut shaped, being uniform in the
plane perpendicular to the dipole and varying as sin φ

in the plane containing the dipole, where φ is the angle
between the observation direction and the dipole axis.
In the sky, Rayleigh scattering arises from the minute
density fluctuation in the atmospheric gas caused by
the constant thermal fluctuation of the medium. while
the sin φ component causes it to be highly polarized at
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Figure 84 Infrared transmission spectra of the materials associated with the fibers of Fig. 83, showing the various absorption bands involved (after
[318]).

Figure 85 Predicted losses arising both the ultraviolet edge absorption
and the infrared absorption for GeO2 − SiO2 fiber (after [317]).

ground level. In glass, Rayleigh scattering can arise
from two separate effects, density and composition
fluctuations.

We have already seen that glasses are disordered
structures, loosely connected in a largely random se-
quence. Evidently, in such a structure there are local
regions in which the average density is higher than in
other regions. The dense and less dense regions can be

traced back to thermally driven fluctuations in density
arising from the Brownian movement of the liquid glass
before it froze. The magnitude of the fluctuation is thus
expected to be related to the freezing temperature—the
higher the temperature, the greater the density fluctu-
ation. One might therefore expect that a high melting
material such as silica would show a higher Rayleigh
scattering loss than a lead glass of lower melting tem-
perature. But this is not so for another reason.

The magnitude of the density fluctuation scattering
is given by the following expression [319]:

αscat.ρ = 8π3n3

3λ4
(n8 p2)(kT f)βT. (280a)

Here p is the photoelastic coefficient for the glass; Tf
is the fictive temperature, defined as the temperature at
which it becomes possible for the glass to reach a state
of thermal equilibrium and closely related to the anneal
temperature; k is Boltzmann’s constant; and βT is the
isothermal compressibility. Certainly, the energy kTf is
the driving energy for the fluctuation giving rise to the
loss mechanism described by αscat.ρ .

The expression for the scattering due to composition
is more complex, taking the form [319]:

αscat,c = 32π3n2

3λ4ρNA

m∑
j=1

[(
∂n

∂xj

)
Tf,x i �=xj

+
(

∂n

∂ρ

)
Tf,x i

(
∂ρ

∂xj

)
P,T f,x i �=xj

]2

Mjxj. (281)

In this formula, Mj and xj are, respectively, the molec-
ular weight and the weight fraction of the j th modifier,
and NA is Avagadro’s number. The partial derivatives
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of the refractive index and the density, ρ, may be deter-
mined from experimental data so that the summation
can be performed. Schroeder [320] has derived an ex-
pression for the mean composition fluctuation in the
glass, which takes the form:

〈�C2〉Tf = ρ0

C0

(
kT f

V

)(
∂µ

∂C

)−1

C0,T f

, (282)

where C is the mole fraction of one of the constituents
in the composition C0, V is the molar volume, and µ

is the chemical potential difference between the major
and minor constituents of th (binary)glass. Evidently,
the composition fluctuation is minimized if ∂µ/∂C is
large and the fictive temperature is small.

Since the refractive index of a glass is a sensitive
function of composition, it is frequently the case that
the composition fluctuation a swamps the density fluc-
tuation component. Thus a low melting glass may well
have a much higher scatter loss than silica, and in
general this is bound to be the case. However, some
particular glass compositions have been found to lead
to exceptionally low total Rayleigh scattering losses.
The potassium silicates [320] are one such group which
show a minimum scattering loss at one composition, as
shown in Fig. 86. In Table XVIII it can list the Rayleigh
scattering at 900 nm wavelength for a number of glasses
that are of interest for optical fiber systems.

3.7. Fiber preparation
In this part we briefly consider the methods by which
the different materials can be formed into fibers with
the desired properties. Several techniques have been de-
scribed for melting glasses that are specifically intended

Figure 86 Rayleigh scattering loss at 633 nm versus composition for a
sodium silicate glass (after [320]).

TABLE XVII I Rayleigh scattering losses for a number of fiber
glasses (quoted for 900 nm) (after [298])

Glass Loss (dB/km)
Silica ∼1.2
Sodium borosilicatea ∼1.5
Phosphosilicateb ∼1.6
Germania silicatec ∼1.2
Selfocd ∼2.0

aRef. [298].
bD. B. Keck, R. D. Maurer and P. C. Schultz, Appl. Phys. Lett. 22, 307
(1973) (0.7% index difference from silica).
cM. Kawachi, A. Kawara and T. Miyashita, Electron. Lett. 13, 442 (1977)
(0.18% index difference from silica).
dG. W. Morey, The Properties of Glass, 2nd ed. (Reinhold, New York,
1954).

for use in the preparation of optical fibers. Each is based
upon the use of powders which are premixed, heated in
a crucible until they fuse, and then agitated to produce
a homogeneous mix. The heating may be applied to the
crucible through black-body radiative coupling from
the walls of an electrically heated furnace; it may be
generated by the coupling of radio-frequency (RF) ra-
diation to the crucible when the crucible is made of a
conducting material such as platinum; or, alternatively,
RF energy may be coupled directly to the melt glass,
provided that is preheated to a temperature at which
it begins to conduct. In the last case, the crucible re-
mains relatively cold, thus helping to reduce problems
of crucible contamination. In all cases it is necessary to
use for the melting an enclosure which excludes con-
tamination from the laboratory environment. Typically,
silica liners are used to provide such isolation.

In the electric furnace, energy is transferred from the
furnace wall to the crucible by black-body radiation. A
great deal of early melting work was done using plat-
inum crucibles contained within silica enclosures for
clean-lines, but with the heat applied through RF energy
coupled from an encircling coil, as shown in Fig. 87.
This technique has the attraction that there is no refrac-
tory insulating anywhere near the melt [322]. However,
precise temperature control is generally more difficult,
the thermal time constant of the apparatus being much
shorter, and the apparatus is far more expensive. It also
requires a conducting crucible, ruling out the use of
silica.

The production of fiber using a double-crucible ap-
paratus is conceptually extremely simple [323, 324].
The basic apparatus is illustrated in Fig. 88. Two con-
centric crucibles are held with their axes vertical. Each
crucible has in its base a central circular nozzle, the
inner being carefully aligned to be concentric with the
outer and perhaps 1 cm above it. The inner crucible is
filled with core composition glass, and the outer with
cladding composition glass. With the glasses molten,
the core glass flows through the inner nozzle into the
cladding stream and is subsequently carried out of the
cladding outer nozzle surrounded by cladding glass, so
that a composite glass flow is produced. The molten
glass exudes into the space outside the outer crucible,
and a filament is pulled from the exudant to form a cored
glass fiber. In practice, the production of low loss fiber
by this process requires a great deal of careful attention
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Figure 87 Radio frequency heating of a platinum crucible for a glass
melting in a clean enclosure (after [321]).

Figure 88 Apparatus for double crucible fiber pulling (after [321]).

to detail at every stage of the process; the glass prepa-
ration, cleaning of crucibles, assembly of apparatus,
loading of the glass, atmosphere control, stabilization
of temperature and so on.

We should note that increasing interest centers upon
the deposition of more than one dopant for a given fiber
and also upon depositing multiple layers, the concentra-
tion in each layer being carefully monitored and varied
in a predetermined manner. In the former category a
typical deposition might be of B2O3-SiO2 to form a
cladding and GeO2-SiO2 to form the core. Such a pair
could be chosen to enable the viscosities of the two
layers to be more equally matched, thus facilitating the
collapse stage. Also, it is found that the presence of
some of the dopants allows greatly increased gas flow
and reaction rates to be used, a factor of considerable
commercial importance in implementing a process.

The presence of layers arising from the deposition
process is sometimes clearly evident in the preforms
and fibers. This appears to be particularly true of CVD
fiber and less so of outside deposition soor fiber. In-
terferometric analysis of the index profiles of preforms
shows the presence of an “oscillating” index profile fol-
lowing a mean curve of the form desired, as illustrated
schematically in Fig. 89. To conclusion of this part we
pay attention to new class of fibers—the holey fibers,
which have the other technology (details see [325] and
references therein).

3.8. Isotopes in fibers
As a first example of possible major applications of iso-
topic engineering it will be considered isotopic fiber-
optics and isotopic optoelectronics at large (see also
[1, 100, 177]). It is known that for typical solids the lat-
tice constant variations of isotopically different samples
are usually within the limits

�d

d
∼ 10−3 ÷ 10−4. (283)

Let us define an isotopic fiber as a structure in which
core and cladding have the same chemical content but
different isotopic composition. The boundary between
different isotopic regions form an isotopic interface.
The difference in the refractive index on both sides of
the isotopic interface could lead to the possibility of to-
tal internal reflection of light and, consequently, could

Figure 89 A schematic picture of the index distribution of a graded cor
fiber produced by layer deposition (after [298]).
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Figure 90 Light guidance in an optical waveguide by total internal reflection.

provide an alternative route to the confinement of light.
For a quantitative estimate let us consider a boundary
between SiO2 (the main component of silica) where
body sides are identical chemically and structurally but
have a different isotopic content—e.g., 28Si16O2 and
30Si18O2 respectively (Fig. 90). In the first approxima-
tion the refractive index n is proportional to the number
of light scatterers in the unit volume. From the Clausius-
Mosotti relation for the refractive index one can deduce
the following proportion ( at �n � n)

�n

n
� 3c

�d

d
, (284)

where c is a dimensionless adjustment factor of the or-
der of unity. Substituting Equation 283 to Equation 284
we can obtain

�n

n
∼ 3 × 10−3 ÷ 10−4. (285)

Using the Snell law of light refraction we obtain the
following expression for the ray bending angle � when
the light travels through the refractive boundary

θ � arc sin

(
n1

n2
sin α0

)
, (286)

where α is the angle between the falling ray and the
direction normal to the interface. For a sliding ray (α �
90◦), which is the control case for light confinement in
fibers, the combining of Equations 285 and 286 leads
to an estimate

θ ∼ 1.5 ÷ 4.5◦.

Thus, the isotopic fibers in which core and cladding
are made of different isotopes the half-angle of the
acceptance-cone could be up to several degrees. The
resulting lattice mismatch and strains at the isotopic
boundaries are correspondingly one part per few thou-
sand [1] and, therefore, could be tolerated. Further ad-
vancement of this “isotopic option” could open the way
for an essentially monolitic optical chip with built-in
isotopic channels inside the fully integrated and chem-
ically uniform structure.

Besides that we should pay attention to the fact that
composition (different isotopes) fluctuation are subject
to the restoring force of the total free energy of the
glass system which will also seek to minimize itself.
Usin g isotope pure materials for core and cladding we
should receive significant less Rayleigh scattering (see
e.g. [4]).

Chapter 4. Laser materials
4.1. Some general remarks
As is well-known, the word laser is an acronym for
“light amplification by the stimulated emission of radi-
ation”, a phrase which covers most, though not all, of
the key physical processes inside a laser. Unfortunately,
that concise definition may not be very enlightening to
the nonspecialist who wants to use a laser but has less
concern about the internal physics than the external
characteristics. A general knowledge of laser physics
is as helpful to the laser user as a general understand-
ing of semiconductor physics is to the circuit designer.
From a practical standpoint, a laser can be considered
as a source of a narrow beam of monochromatic, co-
herent light in the visible, infrared or UV parts of spec-
trum. The power in a continuous beam can range from
a fraction of a milliwatt to around 20 kilowatts (kW) in
commercial lasers, and up to more than a megawatt in
special military lasers. Pulsed lasers can deliver much
higher peak powers during a pulse, although the average
power levels (including intervals while the laser is off
and on) are comparable to those of continuous lasers.

The range of laser devices is broad. The laser
medium, or material emitting the laser beam, can be
a gas, liquid, crystalline solid, or semiconductor crys-
tal and can range in size from a grain of salt to filling
the inside of a moderate-sized building. Not every laser
produces a narrow beam of monochromatic, coherent
light. A typical laser beam has a divergence angle of
around a milliradian, meaning that it will spread to one
meter in diameter after traveling a kilometer. This fig-
ure can vary widely depending on the type of laser and
the optics used with it, but in any case it serves to con-
centrate the output power onto a small area. Semicon-
ductor diode lasers, for example, produce beams that
spread out over an angle of 20 to 40◦ hardly a pencil-
thin beam. Liquid dye lasers emit at a range of wave-
lengths broad or narrow depending on the optics used
with them. Other types emit at a number of spectral
lines, producing light is neither truly monochromatic
nor coherent. Practically speaking, lasers contain three
key elements. One is the laser medium itself, which
generates the laser light. A second is the power supply,
which delivers energy to the laser medium in the form
needed to excite it to emit light. The third is the opti-
cal cavity or resonator, which concentrates the light to
stimulate the emission of laser radiation. All three ele-
ments can take various forms, and although they are not
always immediately evident in all types of lasers, their
functions are essential. Like most other light sources,
lasers are inefficient in converting input energy into
light; efficiencies can range from under 0.01 to around
20% [326–329].
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4.2. Absorption and induced emission
The idea of stimulated emission of radiation, as well-
known, originated with Albert Einstein [330]. Until that
time, physicists had believed that a photon could inter-
act with an atom in only two ways: it could be ab-
sorbed and raise the atom to a higher energy level or
be emitted as the atom dropped to a lower energy level.
Einstein proposed a third possibility-that a photon with
energy corresponding to that of an energy—level tran-
sition could stimulate an atom in the upper level to drop
to the lower level, in the process stimulating the emis-
sion of another photon with the same energy as first. In
the normal world, stimulated emission is unlikely be-
cause at thermodynamic equilibrium more atoms are in
lower energy levels than in higher ones. Thus a photon
is much more likely to encounter an atom in a lower
level and be absorbed than to encounter one in a higher
level and stimulate emission.

Below we consider a cavity whose walls are at tem-
perature T , containing radiation and an ensemble of
atoms and let each atom be represented by a two-level
quantum mechanical system with an energy level sepa-
ration of h̄ω0. In thermal equilibrium the energy density
per unit angular frequency range at ω0 is given by [331]

ρω0 = h̄ω3
0

π2c3

n3

e-hω0/kT − 1
= ω2

0

π2c3

h̄ω0n3

e-hω0/kT − 1
. (287)

Then

ρω0 (e
-hω0/kT − 1) = h̄ω3

0n3

π2c3
. (288)

In addition, because of detailed balance

AN e
2 + B21ρω0 N e

2 = B12ρω0 N e
1 , (289)

where N e
1 and N e

2 are the equilibrium populations of
atoms in the lower and upper levels, respectively, and
B21ρω0 and B12ρω0 are the probabilities per unit time for
induced downward and upward transitions, respectively
and A is Einstein coefficient.

Now we can write

A
N e

2

N e
1

+ B21ρω0

N e
2

N e
1

= B12ρω0 (290)

and

Ae− hω0
kT + B21ρω0 e

− hω0
kT = B12ρω0 (291)

or

ρω0

(
B12e− hω0

kT − B21
) = A. (292)

Set

B12 = B21 = B. (293)

ρω0

(
e− hω0

kT −1
)
B = A. (294)

A

B
= ρω0

(
e− hω0

kT − 1
) = h̄ω3

0n3

π2c3
(295)

B = π2c3

h̄ω3
0n3

A = π2c3

n3 h̄ω3
0

4nω3
0|µ|2

3h̄c3
= 4π2

3h̄2n2
|µ|2

(296)

or

A = 4nω3
0

3h̄c3
|µ|2 (s−1);

B = 4π2

3h̄2n2
|µ|2 (cm3erg−1 s−2). (297)

A

B
= h̄ω3

0n3

π2c3
(erg · s · cm−3) (298)

Let us call w(ω)dω the probability per unit time that
an atom undergoes an induced transition by absorbing
or emitting a photon with angular frequency in (ω, ω +
dω). It is

w(ω)dω = Bg(ω)ρωdω = 4π2

3h̄2n2
|µ|2ρωg(ω)dω

= 4π2

3nch̄2
|µ|2 I (ω)g(ω)dω, (299)

where

I (ω)dω = ρω

c

n
dω

= intensity of radiation with angular

frequency in (ω, ω + dω). (300)

Now we can write∫
w(ω)dω = 4π2

3h̄2n2
|µ|2ρω = 4π2

3h̄2nc
|µ|2 I (ω0) (301)

Further let us assume that a plane wave goes through
a certain medium in the x-direction. Let the medium
consist of atoms which have two possible energy levels
and let N1(N2) be the concentration of atoms in the
lower (higher) energy level (see also [327])

dI (ω) = −w(ω)(N1 − N2)h̄ωdx

(
erg

cm2

)
(302)

But from (301) we have

w(ω) = 4π2

3nch̄2
|µ|2 I (ω)g(ω). (303)

Then

dI (ω) = −
[

4π2

3nch̄2
|µ|2 I (ω)g(ω)

]
(N1 − N2)h̄ωdx

= −
[

4π2(N1 − N2)

3nch̄2
|µ|2 I (ω)g(ω)

]
I (ω)dx

= −α(ω)I (ω)dx, (304)
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where

α(ω) = 4π2(N1 − N2)

3nch̄2
|µ|2ωg(ω)

= nh̄ω

c
B(ω)(N1 − N2).

(absorption coefficient.) (305)

The solution of (304) is,

I (ω, x) = I (ω, x = 0)e−αx . (306)

We define the sbsorption cross-section of the radia-
tive transition as follows (details see also [328])

σ (ω) = α(ω)

N1 − N2
= 4π2

3nch̄2
|µ|2ωg(ω) (cm2) (307)

Note the following

∫
α(ω)dω = 4π2(N1 − N2)

3nch̄2
|µ|2ω0

= nh̄ω0

c
B(N1 − N2)(cm−1 s−1). (308)

4.3. Semiconductor lasers
4.3.1. Heterojunction lasers
Semiconductor lasers, like other lasers, have popula-
tion inversions which lead to stimulated emission of
photons. Semiconductor laser is different from another
lasers primarily because the energy levels in semicon-
ductors must be treated as continuous distributions of
levels rather than as discrete levels [332]. We shall as-
sume that the densities of states in the conduction and
valence bands of the semiconductor are known func-
tions of energy, and that the occupations of these levels
are characterized by quasi-Fermi levels [257]. Then the
probability that the state of energy E in the conduction
band is occupied by an electron is

fc(E) = 1/{1 + exp[(E − Fc)/kT ]}, (309)

where Fc is the quasi-Fermi level for the conduction
band, k is Boltzmann’s constant, and T is absolute tem-
perature. A corresponding expression applies in the va-
lence band, with quasi-Fermi level Fv. For a system in
thermal equilibrium, the quasi-Fermi levels are equal
to each and become the Fermi level EF. In an excited
system we have Fc ( Fv, and we can use the separation
of the quasi-Fermi levels as a measure of the excita-
tion. The use of quasi-Fermi levels greatly simplifies the
treatment of systems with many energy levels, or with
continuous distributions of levels, because one quantity
represents the occupation probability of many levels.
The concept of quasi-Fermi level in an excited system
is valid provided the scattering rate of carriers within
a band is rapid compared to the recombination rate be-
tween bands, i.e., if the carriers within the conduction

band and within the valence band rapidly establish a
quasi-equilibrium among themselves although the con-
duction band and the valence band are not in equilib-
rium with each other For semiconductors with substan-
tial numbers of free carriers, carrier-carrier scattering
will lead to the establishment of quasi-equilibrium (see
e.g. [333, 334]).

The original semiconductor lasers were p-n junc-
tions prepared by diffusion of acceptor impurities into
n-type GaAs, and this is still one of the most common
structures. Semiconductors with �k—conserving transi-
tions at the energy gap are strongly favored for lasing
[335], but some impurity levels can lead to stimulated
emission in indirect-gap semiconductors, e.g. [336].
All the p-n junction lasers are excited by passing
current through the p-n junction, and the excitation rate
is characterized by the current density. When a forward
current flows, electrons are injected into the p-type
material and holes are injected into the n-type material,
te latter to a much smaller extent partly because of
the lower hole mobility. In heterojunctions, potential
barriers play a major role in the injection of carriers
[337]. The excess of electron and hole concentrations
over their equilibrium values creates a local population
inversion and leads to stimulated emission of photons
at sufficiently high excitation levels. The layer near
the p-n junction where this occurs is called the active
region or active layer of the device. Fig. 91 shows
that the effective thickness of the active layer in
graded junction lasers increases as the current density
increases. This leads to smaller quasi-Fermi level
separations and to less efficient use of the excitation for
lasing. Heterostructure lasers (see also [337]) contain
built-in potential barriers for the electrons which tend
to confine them to regions of fixed width. Thus the
excitation can be used most effectively.

A second class of excitation methods involves excita-
tion with photons [339] or with an electron beam [338].
For optical excitation, the active layer thickness will be
of the order of 1/α, where α is the absorption coefficient
of the incident photons. For electron beam excitation,
the active layer thickness will be of the order of the pen-
etration depth of the electrons, which is a function of
their energy (see, e.g. [340]). In both cases, diffusion of
carriers will add a distance of the order of the diffusion
length to the thickness given. If sufficiently thin samples
are used, the excitation state may be relatively uniform
through the sample, provided surface recombination is
unimportant. The excitation rate for the externally ex-
cited structure can be converted to an equivalent cur-
rent density. For photons, the absorbed photon flux is
multiplied by the electronic charge provided that each
absorbed photon give rise to an electron-hole pair. It
should be added that values of about 3Eg are necessary
to create one e-h pair [339]. This means that the main
part of the incident pump energy is transferred into heat.
This is one of the disadvantages of e-beam pumping.

The value of the gain coefficient gth at the lasing
threshold is given by a very simple calculation (see also
[338]). If the laser cavity is bounded by parallel surfaces
with reflectivities R1 and R2, separated by a distance
L , then the amplification of the photon intensity on a
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Figure 91 Spatial distribution of the recombination rate for graded GaAs p-n junction lasers with the indicated forward current densities at 300 K.
The donor concentration is 3×1018 cm−3, and the acceptor gradients at the junction are (a) 1022 cm−4 and (b) 1023 cm−4. The ordinate is the nominal
current density defined in Equation 317, in A/cm2, equivalent to 6.2 × 1022 recombination/cm3s. Note the increase in effective active layer thickness
as the current density increases, particularly in (a). (after [338]).

round trip through the device is R1R2exp[2(g − α)L],
where α is an effective absorption coefficient, e.g., for
free-carrier absorption. The lasing condition is that this
amplification factor be unity. Thus

gth = α +
(

1

L

)
log

(
1

R

)
, (310)

where R = (R1 R2)1/2. The current density for which
lasing occurs, i.e., the lowest current density for which g
reaches gth at any photon energy, is the threshold current
density Jth, and is one of the principal characteristics
of a semiconductor laser.

The rate at which photons are emitted per unit volume
can be written as (see, e.g., [341])

r (E)dE = [rspon(E) + Nrstim(E)]dE, (311)

where N is the average number of photons per mode,
given for thermal equilibrium by

N (E) = 1

exp(E/kT ) − 1
. (312)

The term rspon (311) gives the rate of spontaneous
downward transitions of the electronic system, and rstim
is the difference between the stimulated rates of down-
ward and upward transitions.

The spontaneous and stimulated functions can be
written

rspon(E) = a
∫

ρc(Eu)ρv(E1)|M |2 fu(1 − f 1)dEu,

(313a)

rstim(E) = a
∫

ρc(Eu)ρv(E1)|M |2( fu− f 1)dEu,

(313b)

a = 4Ne2 E/m2 h̄2c3, (313c)

where fu and f1 are the probabilities that the upper and
lower states involved in the transition are occupied, N
is the index of refraction, and E1 = E − Eg − Eu with
the convention for measuring energies from nominal
band edges separated by the nominal energy gap Eg.
The squared matrix element |M |2 is averaged over all
polarizations of the radiation, and is a function of both
Eu and E1. Equation 313 ignores Coulomb interaction
between electron and hole (see below), which should
be relatively weak when large carrier concentrations are
present. Lasing in materials for which exciton effects
are important has been treated by Haug [342].

When the populations are characterized by quasi-
Fermi levels as in Equation 309, the relation between
rstim and rspon is

rstim(E) = rspon{1 − exp[(E − �F)/kT ], (314)

where �F = Fc − Fv is the difference of the quasi-
Fermi levels for the conduction band and the valence
band. The relation between the local gain coefficient
glocal and rstim is

glocal(E) = −α(E) = (πch̄3/2/N E)2rstim(E), (315)

where the minus sign arises because we have defined
rstim and glocal to be positive when radiation is emit-
ted, while the absorption coefficient α is positive when
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radiation is absorbed. Combine (314) and (315) we
obtain

rspon(E) = (N E/πch̄3/2)2

× α(E/{exp[(E − �F)]/kT ) − 1}. (316)

in thermal equilibrium, when �F = 0, this reduces to
the well-known result of Van Roosbroeck and Shokley
[343]. For semiconductor lasers the term in �F is ex-
tremely important. Equation 314 shows that there can
be gain only for photon energies E ≺ �F .

The local gain coefficient is a function of photon en-
ergy, but for most laser cases we are interested primarily
in its peak value gmax. In Fig. 92 it plots gmax vs. exci-
tation rate, which is characterized for this purpose by
the nominal current density

Jnom = 10−4e
∫

rspon(E)dE, (317)

the current density required to maintain the actual ex-
citation rate in a homogeneous layer 1 µm thick. The

Figure 92 Maximum local gain coefficient (the value of glocal(E) at the
photon energy with maximum gain) vs nominal current density, defined
in Equation 317, for various temperature and for (a) ND = 3 × 1018,
NA = 6 × 1018 cm−3; (b) ND = 3 × 1018, NA = 4 × 1018 cm−3;
(c) ND = 1019, NA = 1.3 × 1019 cm−3. The ion screening temperature
is 30,000 K (after [338]).

Figure 93 Temperature dependence of the nominal current density re-
quired to reach a gain coefficient gmax = 50 cm−1, taken from results
of Fig. 92. The curves are labeled by the values of donor and accep-
tor concentration, respectively, in units of 1018 cm−3. The temperature
dependence of the threshold current density is also a function of the
temperature dependence of the losses and of the effective active layer
thickness (after [338]).

curves of Fig. 92 are given for several sets of values
of donor and acceptor concentrations, and for several
temperatures from absolute zero to 300 K. Note that
increasing the compensation, i.e. increasing ND + NA
for a given |ND + NA|, raises the nominal current den-
sity required to reach a specified gain at low tempera-
ture, but lowers it at room temperature (cf. Figs 92a–
c). Fig. 93 shows the nominal current density required
to reach a gain of 50 cm−1 for each case in Fig. 92.
It is an indication of the temperature dependence of
the threshold current density for typical semiconductor
junction lasers but makes no allowance for the effect of
the structure or for losses such as free carrier absorption.
A similar analysis has also been made by Hwang [344] ,
whose curves of gain versus current density are similar
to those given in Fig. 93. Both calculations agree well
wth experiment. The photon energy at which lasing oc-
curs is found by Hwang [344] to be in good agreement
with experimental results (details see [338, 339, 342]).

4.3.2. Study of excitons lasing
With increasing excitation intensity, frequently laser ac-
tion is observed in the excitonic luminescence. How-
ever, the direct recombination of an exciton can never
give rise to laser action, because the coupled exciton-
photon system corresponds in the resonant approxima-
tion to two linearly coupled harmonic oscillators. The
equations of motion of this system do not contain the
nonlinearity which is necessary to describe laser action.
The participation of a third field is required in order to
introduce the possibility of laser action [342], i.e., the
laser action in exciton systems has to be a parametric
process in which a pump field, a signal field and an idler
field participate.

Below we describe a scheme for lasing action in-
volving excitons in a pure crystal. In Refs. [345, 346]
a general theory of various spontaneous and stimulated
exciton recombination processes has been developed.
In our analysis we assume a two-band model for the
crystal. Atoms at lattice sites interact with each other
and an electromagnetic field. The analysis is addressed
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to tight-binding excitons in the first step. According to
[346] the weak-binding case of Wannier-Mott excitons
follows a similar description but is more involved. In
next section we follow very close the results of Liu and
Liboff [346].

The Hamiltonian of the entire system of crystal and
electromagnetic field is [346]

H = Hxtal + Hem + Hint (318)

The Hamiltonian of the crystal can be written in the
Wannier representation

Hxtal =
∑

ρ

Eec†ρcρ +
∑

ρ

Ehd†
ρdρ

+ h̄
∑
ρ1,ρ2

W (ρ1 − ρ2)c†ρ1
cρ1 d

†
ρ2

dρ2 . (319)

In this expression cρ and dρ operators refer, respec-
tively to electrons and holes at site ρ. Their respective
energies are Ee and Eh. Indicated operators obey the
anticommutation relations:

{cρ, c†ρ ′ } = {dρ, d†
ρ ′ } = δρ,ρ

′ ,

{cρ, dρ ′ } = {cρ, d†
ρ ′ } = {c†ρ ′, dρ ′ }

= {c†ρ , d†
ρ ′ } = 0. (320)

The function in Equation 319 represents the interac-
tion between electrons and holes and has the integral
representation

h̄W (ρ1 − ρ2) =
∫ ∫

d�rd�r ′w∗
c (�r − �ρ2)w∗

v(�r ′ − �ρ2)

× e2

|�r − �r ′|wc(�r ′ − �ρ2)wv(�r − �ρ1),

(321)

where wc(�r − �ρ) and wv(�r − �ρ) are Wannier func-
tions relevant to the conduction and valence bands,
respectively.

The Hamiltonian Hxtal may be diagonalized as fol-
lows (see also [347]). For this purpose we define the
operators

B†
ρ = c†ρd†

ρ , (322a)

Bρ = dρcρ. (322b)

The operator B†
ρ creates an electron-hole pair

whereas Bρ annihilates the pair. The operator

µρ = 1

2
(c†ρcρ + d†

ρdρ) (323)

indicates if the atom at the site ρ is excited or not.
Its eigenvalues are (1, 0). Combining the latter three
equations gives

[Bρ
′ , B†

ρ] = δρ,ρ
′ (1 − 2µρ). (324)

We further define the operator

b†
q = 1√

N

∑
ρ

eiqρ B†
ρ, (325)

which represents the creation of an exciton in the prop-
agating state �q. The total number of atoms in the crystal
is N . The commutation relation for exciton operators
the appears as [342]

[bq, b†
q′ ] = δq,q ′ − 2

N

∑
ρ

ei(q−q
′
)µρ. (326)

In this manner wereach the important result that ex-
citon operators are boson operators only when the num-
ber of excited atoms in the crystal is small compared
to the total number of atoms N . In this even, the sec-
ond term of Equation 326 can be neglected, giving
[bq, b†

q′ ] = δq,q ′ . The transformation Equation 325 then
diagonalizes Hxtal as

Hxtal =
∑

q

Eqb†
qbq, (327a)

where

Eq = Ee + Eh + εq, (327b)

and

εq = h̄
∑

ρ

W (ρ)e−iqρ. (327c)

The diagonalization Equation 327a demonstrate that
excitons are collective excitations of the entire crystal.

In the limit of intense lasing, cited authors [346] re-
placed the exciton and photon amplitudes with their
classical counterparts (see also [348–350]:

b†
q = βq exp

[
i
(
ω0

q + �1 + iη
)
t
]
, (328)

a†
j = aj

[
i
(
ω0

j + �2 + iη
)
t
]
, (329)

where h̄ω0
q = Eq . The operator a†

j creates a photon
of frequency ωj and γ is the decay rate of this mode.
The coefficient η is introduced to describe the decay of
excitons. The frequency �1 and �2 remain arbitrary.
Equations for a†

j and βq have following expressions:

(i�1 − η)βq = − i√
N

∑
ρ

Gρσρa†
j eiqρ, (330)

(i�2 − γ )a†
j = i√

N

∑
ρ

∑
q

G∗
ρβqe−iqρ. (331)

Substituting Equation 330 into 331, and take into
account of the resonance condition, we have

ω0
q + �1 = ω0

j + �2, (332)
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and equating the real and imaginary parts of the result-
ing equation gives

γ = η

η2 + �2
1

∑
ρ

|Gρ |2σρ, (333)

�2 = − �1

η2 + �2
1

∑
ρ

|Gρ |2σρ. (334)

It follows that

�1

�2
= − η

γ
. (335)

While the difference frequency

� ≡ �1 − �2, (336)

Equation 560 yields

�1 = �

1 + γ

η

, �2 = − �

1 + γ

η

. (337)

Substituting the exponential forms (322) and (329)
into next equation

d

dt
σρ = 1

τ
(s0 − σρ) + 2i√

N

[ ∑
q

Gρbqa†
j eiqρ

−
∑

q

G∗
ρb†

qaje
−iqρ

]
(338)

in steady state we find

0 = 1

τ
(s0 − σρ) + 2i√

N

[ ∑
q

Gρb∗
qa∗

j eiqρ

−
∑

q

G∗
ρbqaje

−iqρ

]
. (339)

Inserting Equation 330 into the latter equation gives

σρ = s0 − 4τ

η[1 + �2/(η + γ )2]
|Gρ |2〈n〉σρ, (340)

where s0 is an asymptotic inversion value. Here, we
have written

n = 〈a∗
j aj〉 (341)

for the average number of photons in the jth mode.
Solving Equation 340 for the local inversion, we

obtain

σρ = s0

[
1 + 8πτ 〈n〉e2d2

f

h̄ω0
j m2V η{1 + �2/(η + γ )2

sin2�kj�ρ
]−1

.

(342)

For the average inversion

〈σ 〉 = 1

N

∑
ρ

σρ, (343)

we find

〈σ 〉 = s0

N

×
∑

ρ

[
1 + 8πτ 〈n〉e2d2

f

h̄ω0
j m2V η{1 + �2/(η + γ )2

sin2�kj�ρ
]−1

.

(344)

In the continuum limit Equation 344 becomes

〈σ 〉 = s0

V

∫
dr

[
1

1 + (4τnγ /ρS) sin2 �k�r

]
, (345)

where N = ρV and 〈n〉= nV . Thus, ρ is atomic density
and n is photon density. Furthermore,

S = h̄ω0
j m2γ η

2πe2ρδ2
f

[
1 + �2

(η + γ )2

]
. (346)

Substituting the form for γ given by Equation 343
into the last equation, together with the continuum form
of next equation

Gρ = − e

m

√
2π

h̄ωjV
sin(�kj�ρ)ejδj (347)

gives the following relation

S = s0

V

∫
dr

sin2�k�r
1 + (4τnγ /ρS)sin2�k�r , (348)

with
∫

dr V , Equations 345 and 347 may be manipu-
lated to yield

n = ρs0

4πγ

(
1−〈σ 〉

s0

)
. (349)

Finally, integrating Equation 345 we obtain

〈σ 〉
s0

= 1√
1 + 4τnγ /ρS

. (350)

With Equation 574 this expression becomes

〈σ 〉 = S

2

(
1+

√
1 + 4s0

S

)
. (351)

For laser action to be realized, one must have the pho-
ton density (at frequencyωj), n > 0. From Equation 349
this condition is satisfied providing s0 > 〈σ 〉, or from
Equation 287, s0 > S, which with Equation 349 gives

s0 >
h̄ω0

j m2γ η

πe2ρδ2
f

[
1 + �2

(η + γ )2

]
. (352)

At resonance, � = 0 and the right-hand side of
the preceding expression is minimized. In this limit
Equation 348 reduces to the same form given by the
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Schawlow-Townes criterion [351] for randomly dis-
tributed atoms. However, in Equation 348, the matrix el-
ement δf ≡〈vρ|p|cρ〉 is appropriate to excitons whereas
the matrix element in the Schawlow-Townes expression
is relevant to a single atom.

For Wannier-Mott excitons the criterion Equa-
tion 348 maintains with δf replaced by

δW−M ≡
∑
ρ ′

F(ρ ′)
∫

drw∗
v(r − ρ)pwc(r − ρ − ρ ′).

(353)

In this expression F(ρ) is the wavefunction of a
Wannier-Mott exciton [352]. In preceding investiga-
tion Liu and Liboff have considered rigid lattices. If
lattice vibrations are present, exciton-phonon interac-
tions will cause exciton diffusion [352] which may di-
minish coherence for lasing. However, lasing will still
occur [343] providing the relaxation time for exciton
diffusion is longer than the exciton relaxation time, τ

in Equation 328. This will be the case for sufficiently
weak excito-phonon interaction (details see below).

As was shown above optical transitions in pure III–
V compounds which can be used for laser action are
band-band transitions. In II–VI compounds (as well as
LiH [1] and etc.), the recombination process of elec-
trons and holes via exciton states is more favorable
than the band-band transition [352–354]. During last
four decades laser action has been obtained in II–VI
compounds by electron beam bombardment [355–357],
by optical excitation [353, 358–360]. The laser transi-
tions involve the A1 - nLO phonons, where n = 1,
2. Gain measurements [357, 359] and simultaneous
measurements of the emission intensities of the A1
line (direct A - exciton recombination [353]) and the
A1 - LO line also confirm the statement that in CdS the
A1 - LO (A1 - 2LO) line starts to lase for sufficiently
high pump rates (see also Fig. 94) (details see [356]).
In cited papers Haug [342] calculated the temperature

Figure 94 The onset of stimulated emission in CdSe at 77 K (after
[356]).

Figure 95 Maximum gain frequency �max vs temperature (after [342]).

dependence of the maximum gain frequency at thresh-
old (see Fig. 95). The result is simple in the low-
temperature limit

�max → 3

2
kT (354a)

and also in the high-temperature limit

�max → (3κkT/B)2/5 exp(−2h̄ν/5kT, (354b)

where 2κ = 1.25 × 1012 s−1, corresponding to losses
of 100 cm−1, B = 1.55 × 1035 erg−3/2 s−1 for CdS
crystals. These limiting results have also been given
by Mashkevich et al. [360]. The typical experimental
gain Ithr (T ) dependence, obtained in paper [359] is
presented in Fig. 96. There are shown some spectra of
stimulated emission at different temperatures. Authors
of [359] indicated some contradiction of their experi-
mental results with theoretical description.

4.4. Nonlinear properties of excitons in
isotope-mixed crystals

Another application of isotope pure and isotope mixed
crystals that will be discussed here is related to the pos-
sibility of using an isotopically mixed medium (e.g.,
LiHx D1−x or 12Cx

13C1−x ) as an oscillator of coherent
radiation in the ultraviolet spectral range [361, 362].
To achieve this, the use of indirect electron transitions
involving, say, LO phonons was planned [342, 363].
As was shown above using indirect electron transi-
tions involving phonons to degenerate coherent radi-
ation in semiconductors was originally proposed by
Basov et al. (see [355] and reference therein). Kulevsky
and Prokhorov [358] were the first to observe stimu-
lated radiation using emission lines of LO phonon rep-
etitions in CdS crystals on two photon excitation (see
also [364]). The detection of LO phonon replicas of
free-exciton luminescence in wide-gap insulators at-
tracted considerable attention to these crystals (see e.g.
Plekhanov [5], Plekhanov [6]). At the same time it ia
allowed one to pose a question about the possibility
of obtaining stimulated emission in UV (VUV) region
(4–6 eV) of the spectrum, where no solid state sources
for coherent radiation exist yet. In the first place this
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Figure 96 The dependence Ithr(T) and some examples of (above-threshold) lasing spectra (in the range of A1–1LO; A1–2LO phonons) at different
temperature (after [359]).

related to the emitters working on the transitions of
the intrinsic electronic excitation (exciton). The last
one provides the high energetical yield of the coher-
ent emission per unit volume of the substance. The re-
sults obtained on solidified xenon (Basov et al. [365])
and argon (Schwenter et al. [366]) under electron beam
excitation with following excimer molecules emission
form an exception.

In this part we will discuss the investigation results of
the influence of the excitation light density on the reso-
nant secondary emission spectra of the free-exciton in
the wide-gap insulator LiHx D1−x (LiH1−x Fx ) crystals.
The cubic LiH crystals are typical wide-gap ionic in-
sulator with Eg = 4.992 eV [1] with relatively weak
exciton-phonon interaction however: EB/h̄ωLO = 0.29
where EB and h̄ωLO are exciton binding energy and

Figure 97 Photoluminescence spectra of free excitons at 4.2 K: 1—LiH;
2—LiHx D1−x and 3—LiD crystals (after [5]).

longitudinal optical phonon’s energy, respectively. Be-
sides it might be pointed out that the analogous rela-
tion for CdS, diamond and NaI is 0.73, 0.45 and 12.7,
respectively (Plekhanov [367]). Fig. 97 depicts, as an
example, the exciton luminescence spectrum of pure
(LiH and LiD) and mixed (LiHx D1−x ) crystals at a low
temperature. Analogous results for 12Cx

13C1−x mixed
diamond crystals are shown in Fig. 98. A common fea-
ture of all three spectra depicted in Fig. 97 is a phonon-
less emission line of free excitons and its 1LO and 2LO
phonon replicas. An increase in the density of the ex-
citing light causes a burst of the radiation energy in the
long-wave wing of the emission of the 1LO and 2LO
repetitions (see Fig. 99) at a rate is higher for the 1LO
repetion line [361]. A detailed dependence of the lu-
minescence intensity and the shape of the 2LO phonon
replica line are presented in Fig. 100 and Fig. 101, re-
spectively. The further investigations have shown [369]

Figure 98 Cathode—luminescence spectra of isotopically modified di-
amond at 36 K. Intrinsic photo-assisted recombination peaks are labelled
in the top spectrum, those from boron-bound excitons in that at the bot-
tom (after [368]).
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Figure 99 Luminescence spectra of free excitons in LiH crystals in the
region of the emission lines of 1LO and 2LO phonon repetitions at 4.2 K
for low (1) and high (2) density of excitations of 4.99 eV photons. The
scales of the different curves are different (after [369]).

Figure 100 The dependence of the intensity in the maximum (1) and
on the long-wavelength side (2) of 2LO replica emission line of LiH
crystals on the excitation light intensity (after [369]).

that with the increase of the excitation light intensity at
the beginning a certain narrowing can be observed, fol-
lowed by widening of the line of 2LO phonon replica
with a simultaneous appearance of a characteristics,
probably mode structure. From Fig. 100 it can be seen
that the coupling between longwavelength lumines-
cence intensity and excitation light intensity is not only
linear, but, in fact, of a threshold character as in case
of other crystals [332, 364]. A proximity of the exciton
parameters of LiH and CdS (ZnO) crystals allowed to
carry out the interpretation of the density effects in LiH
on the analogy with these semiconducting compounds.
Coming from this in the paper [369] it was shown
that for the observed experimental picture on LiH crys-

Figure 101 The dependence of the shape of 2LO replica line on the
excitation intensity (I0) light: 1—0.05I0; 2—0.09I0; 3—0.35I0; 4—I0

(after [369]).

tals to suppose the exciton-phonon mechanism of light
generation [342] is enough the excitons density about
1015 cm−3. This is reasonable value, if the high quality
of the resonator mirrow—the crystal cleavage “in situ”
and relatively large exciton radius (r = 40 Å [5] is
taken into account. To this light mechanism generation
must be also promoting a large value of the LO phonon
energy (h̄ωLO = 140 meV) . Owing to this the radiative
transition is being realized in the spectral region with a
small value of the absorption coefficient, and thus with
a small losses in resonator (details see also [367]).

In the present part we briefly analyse the shift of
free exciton luminescence on the crystal lattice depen-
dence in the first step it will be considered F doped of
LiH crystals. The reflectance spectra of the investigated
crystals with clean surface (cleaved in LHeT) had a dis-
tinctly expressed excitonic structure. Typical reflection
spectra of LiH1−x Fx with mirror surface is depicted in
Fig. 102 [370]. The crystal cleavage is carried in super-
fluid helium of helium cryostat bath. In the Fig. 102 for
the comparison is shown the reflection spectrum of pure
crystal of LiH (curve 1). All spectra possess the identi-
cal longwavelength exciton structure: we can see 1 s and
2 s exciton states. It’s clearly seen, that the F addition
in LiH crystals leads, as it naturally expected, to short-
wavelength shift of the spectrum as the whole. With the
growth x is increased the energetic interval between 1s
and 2s exciton states and at the same time their short-
wavelength shift is different and has saturated character
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Figure 102 Reflection spectra of LiH (1); LiH1−x Fx (x = 0.06%) (2);
and (x = 1.6%) (3) at 78 and 4.2 K (2′) (after [370]).

[363]. At the maximum value of x ≤ 2.5% the exciton
Rydberg (EB), obtained on the hydrogen-like formu-
lae is equal 75 ± 3 meV (EB = 40 meV for LiH). For
LiD1−x Fx crystals at x ≤ 1.6% exciton binding energy
is equal EB = 57 ± 2 meV. Supposing the linear depen-
dence EB on the x concentration in LiH1−x Fx crystals,
we obtain EB = 62 ± 25 meV for x = 1.6% and the
experimental meaning of this parameter is equal 67 ±
3 meV. Such a large error at the theoretical extrapola-
tion is connected with the large errors when determin-
ing EB for LiF crystals [371, 372]. However, despite of
the identical structure of all free-excitons luminescence
spectra, it is necessary to note a rather big variation of
the luminescence intensity of the crystals from the dif-
ferent batches observed in the experiment. Therefore
the crystals possessing the maximum value of the free
exciton luminescence quantum yield were chosen for
measurements of the density effects.

The luminescence spectra of virgin and mixed crys-
tals are very likely and consist of narrow zero phonon
line and its more wider LO replicas [6, 369]. As well
as in the reflection spectra (see above) the dopant of
LiH crystals with deuterium or fluorine is drawn to
shortwavelength shift of the luminescence spectrum
as a whole (Figs 97 and 103). The increasing of the
deuterium concentrations leads to the widening of the
luminescence line (see also [5]). The increasing of
the fluorine concentration is causing (Figs 103, 104),
except the spectrum shift, the sharp ignition of zero
phonon line intensity in comparison with the lines of
Lo-replicas intensity (see also [370]). Except indicated
effects, the fluorine activation of the LiH (LiD) crys-
tals is shifting the temperature quenching of the free
excitons luminescence in the more high region. As on

Figure 103 Free excitons luminescence spectra of LiH (1);
LiH0.984F0.016 and LiD0.992F0.008 crystals cleaved in liquid helium
(after [373]).

Figure 104 Reflection (1) and luminescence (2, 2′) spectra at 4.2 K and
260 K (3) of LiH1−x Fx mixed crystals cleaved in liquid helium (after
[373]).

example on the Fig. 104 is depicted the reflection and
luminescence spectra of LiH1−x Fx crystals in the wide
temperature range [5]. It can be seen that free exci-
tons zero-phonon emission line in these crystals is reli-
ably registrated practically up to the room temperature.
Taking into account the mixed crystals lattice poten-
tial relief it could (compare Fig. 105) not be excluded
absolutely the possibility to obtain the laser generation
on the zero-phonon line emission that was already ob-
tained in the paper [374].

In conclusion of this section we should underlined
that if the observable mode structure is really caused
by the laser generation it may be smoothly tuned in
the region of energies 4.5 ± 5.1 eV owing to smooth
transition of the line emission energy in the LiHx D1−x

(LiHx F1−x ; LiDx F1−x ) mixed crystals [5, 6] as well as
in the range 5.35–5.10 eV in 12Cx

13C1−x mixed crystals
(see also Fig. 20 in [1]).
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Figure 105 Emission spectra of CdS0.9Se0.1 at different levels of excita-
tion: 102(1); 104(2) and 106 (3) Wt/cm2. 0—zero-phonon line; I—III—
LO—phonon replicas and dashed line is the absorption spectra, T = 2 K
(after [374]).

Chapter 5. Other unexplored applications
of isotopic engineering

5.1. Isotopic information storage
The current rapid progress in the technology of high-
density optical storage makes the mere announcing
of any other thinkable alternatives a rather unthankful
task. An obvious query ‘who needs it and what for?’
has, nevertheless, served very little purpose in the past
and should not be used to veto the discussion of non-
orthodox technological possibilities. One such possi-
bility, namely the technology of isotopic information
storage (IIS) is discussed in this paragraph.

Isotopic information storage may consist in assigning
the information ‘zero’ or ‘one’ to mono-isotopic mi-
croislands (or even to a single atoms) within a bulk crys-
talline (or thin film) structure. This technique could lead
to a very high density of ROM-type (read-only memory
or permanent storage) information storage, probably
up to 1020 bits per cm3. The details are discussed by
Berezin et al. [100, 375, 376]: here it notes only that the
use of tri-isotopic systems (e.g., 28Si; 29Si; 30Si) rather
than di-isotopic (e.g., 12C; 13C) could naturally lead
to direct three dimensional color imaging without the
need for complicated redigitizing (it is known that any
visible color can be simulated by a properly weighted
combination of three prime colors, but not of two).

Indeed, let us assume that the characteristic size of
one information-bearing isotopic unit (several atoms)
is 100 Å. Then 1 cm3 of crystalline structure, e.g. dia-
mond, is able to store roughly (108)3/100 = 1022 bits
of information [376]. This capacity greatly exceeds that
need to store the information content of all literature
ever published (∼= 1017 bits), including all newspapers.

The main potential advantage of isotope-mixed crys-
tals lies in the fact that the information is incorporated
in the chemically homogeneous matrix. There are no

chemically different impurities (like in optical storage
with color centres) or grain boundaries between islands
of different magnetization (like in common magnetic
storage). The information in isotope-mixed crystals ex-
ists as a part of the regular crystals lattice. Therefore,
the stored information in isotope-mixed crystals is pro-
tected by the rigidity of the crystal itself. There are
no “weak points” in the structure (impurities, domain
wells, lattice strain etc) which can lead to the infor-
mation loss due to bond strains, enhanced diffusion,
remagnetization, etc. Differences in the bond lengths
between different isotopes (e.g., 28Si–29Si or 29Si–30Si;
H–D and so on) are due to the anharmonicity of zero-
point vibrations (see, e.g., [28]). This is not enough
for the development of any noticeable lattice strains
although these differences are sufficiently large to be
distinguishably detected in IIS-reading).

The mechanism potentially available in IIS for the
writing-in of the information may be divided into two
general categories. The first category refers to all tech-
niques which are able to direct externally a particular
atom to a specified position on the surface of the grow-
ing crystal structure. Any beam technique with ability
of focusing on 1 Å scale could, in principle, appear fea-
sible for such purpose. The second category relates to
all ’internally operated’ possibilities, i.e., delivering of
the required isotope as a part of the molecule and de-
positing it in a particular position through some chem-
ical process (e.g., exchange reaction, chemisorption,
etc). This group of possibilities is, in fact, similar to the
DNA-RNA mechanism in actual biological information
transfer in living systems. Some chemically very simple
crystals have, nevertheless, a very complex lattice struc-
ture. One known example is elementary boron [377,
378], which can crystallize in a beta-rhombohedral
structure with 105 atoms in a unit cell with 15 crystallo-
graphically nonequivalent positions. Moreover, various
atoms have 3 different coordination numbers: 91 atoms
have the coordination number 6; 12 atoms, 8 and 2
“special” atoms have 9 nearest neighbors [378]. This
peculiarity of the crystalline boron is rather surprising
in view of the fact that it is an elementary (monoatomic)
crystal. Similar possibilities exist for lattices with 2 el-
ements, e.g., the silicides of manganese are known to
form very complex structures [379]. It is therefore, le-
gitimate to consider the ability of such structures with
complex crystal lattice to provide the basis for compact
information storage within the frameworks of the model
of an alternative (nonorganic) genetic code. In princi-
ple, isotopic combinations could provide the basis for
the storage information even in “simple” crystals (e.g.,
in carbon or silicon-based structures) and not only just
in crystals with complex unit cells. It is possible even
to raise the question what (if any) effects could be con-
nected with isotopic permutations in “regular” biology
(e.g., 12C- and 13C combinations in various fragments
of DNA) Nevertheless, in crystals with large and so-
phisticatedly constructed unit cells the already “preex-
isting” significant level of structural complexity makes
them, apparently, more preferable candidates for the
evolution game of isotopic information-bearing arrays
(details see [378]).
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The possible key to a 3D-access could, in principle,
be provided by any method which is able to probe the
nuclear mass and/or magnetic moment of a single atom
at a particular lattice site below surface. Without de-
tailed elaborations the following possibilities present
themselves:

1. Spectroscopy of localized crystal vibrations (see
also, [1] which generally contains the information on
the vibrational frequencies of an individual atom (due to
square-root-of mass) dependence of the vibrational fre-
quencies this could be a spectroscopically pronounced
effect.

2. Recoil phenomena (e.g., Rutherford backscatter-
ing).

3. Nuclear magnetic resonance (NMR).
4. Spin-sensitive neutron scattering.

Of course, there has to be a great deal of perfection-
ing refinement to these or other techniques before they
can actually be applied for their use in isotope-mixed
crystals.

5.2. Isotopic structuring for fundamental
studies

Isotopic substitution has made it possible to produce the
objects of research that earlier were simply inaccesible
(with the exception of the LiH-LiD system). The use of
such objects allows the investigation of not only the
isotope effects in lattice dynamics (elastic, thermal, and
vibrational properties (see reviews [2–6]) but also the
influence of such effects on the electronic states (the
renormalization of the band-to-band transition energy
Eg, the exciton binding energy EB, and the size of the
longitudinal-transverse splitting �LT [5, 6]).

Furthermore, it is widely known that the melting and
boiling points of ordinary water and heavy water (D2O)
differ by a few degrees centigrade. For elements heav-
ier than hydrogen the isotopic differences in melting
points (�T ) of elemental and complex solids are gen-
erally smaller but also detectable. It is quite surprising,
however, that there are almost no reports of direct mea-
surement of these differences in the literature.

Another noticeable fact is that sometimes the isotope
effect shows a drastic “self-amplification,” e.g., isotopic
replacements of Ba and Ti in BaTiO3 (both are heavy
elements) can shift the phase transitions temperatures
by as much as 200 K [380]. The reason(s) for such
selective anomalies are not yet clearly established. This
part are widely considered early in the book [1].

5.3. Other possibilities
Here we shall briefly list a few additional possibilities
of isotopic structuring (see also [2–4]).

1. Very perspective direction of isotope engineering
could be based on exploiting the differences in thermal
conductivity (see above) between isotopically pure and
isotopically mixed solids for purposes such as phonon
focusing, precise thermometry based on isotopically-
gradiented structures, etc.

2. The use of isotopically structured Ni-films for
neutron interference filters has been reported by
Antonov et al. [381].

3. Isotopically structured light devices. This could
slightly shift the spectral characteristics and lead to
some changes in the kinetics of energy transfer, modify
the lifetimes, recombination rate, etc.

4. Since the speed of sound is proportional to
√

M,

variations in isotopically structured acousto-electronic
devices (transducers, surface acoustic wave devices,
etc.) could be significant, especially in achieving phase
differences over the relatively short isotopically distin-
guished paths (see also [177]).

5. The possibility to get at rather low pressure the
transition of metal-insulator with metallic conductiv-
ity on the zone genetic related with hydrogen in LiH
crystals (see also [177] and references therein).

6. The use of the isotope boundary for Mössbauer
filtration of synchrotron radiation, since this makes it
possible to get rid of the background noise caused by
the interaction between synchrotron radiation and the
electrons in matter [382].

7. Isotope-based quantum computers (see e.g. [177,
383, 384]).

Above we have outlined several, mostly untested pos-
sibilities arising from exploiting differences in various
stable isotopes and purposeful isotopic structuring. The
above examples of the potential capabilities of isotopic
engineering by no means an exhaustive list.

6. Conclusion
In this review, we have presented briefly the results of
experimental and theoretical studies of the objects of re-
search that earlier were simply in accessible (naturally
with exception of LiHx D1−x crystals). The use of such
objects allows the investigation of not only the isotope
effects in lattice dynamics (elastic, thermal and vibra-
tional properties) but also the influence of such effects
on the electronic states via electron-phonon coupling
(the renormalization of the band-to-band transition en-
ergy Eg, the exciton binding energy EB and the size of
the longitudinal-transverse splitting �LT).

Substituting a light isotope with a heavy one in-
creases the interband transition energy Eg (excluding
Cu-salts) and the binding energy of the Wannier-Mott
exciton EB as well as the magnitude of the longitudinal-
transverse splitting �LT. The nonlinear variation of
these quantites with the isotope concentration is due
to the isotopic disordering of the crystal lattice and is
consistent with the concentration dependence of line
halfwidth in exciton reflection and luminescence spec-
tra. A comparative study of the temperature and iso-
topic shift of the edge of fundamental absorption for a
large number of different semiconducting and insulat-
ing crystals indicates that the main (but not the only)
contribution to this shift comes from zero oscillations
whose magnitude may be quite considerable and com-
parable with the energy of LO phonons. The theoretical
description of the experimentally observed dependence
of the binding energy of the Wannier-Mott exciton EB
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on the nuclear mass requires the simultaneous consid-
eration of the exchange of LO phonons between the
electron and hole in the exciton, and the separate inter-
actions of carriers with LO phonons. The experimental
dependence EB ∼ f (x) for LiHx D1−x crystals fits in
well enough with the calculation according to the model
of large-radius excitonin a disordered medium; hence it
follows that the fluctuation smearing of the band edges
is caused by isotopic disordering of the crystal lattice.

Details analysis the process of the self-diffusion
in isotope pure and heterostructures was done in
Chapter 1. This chapter was organized around general
principles that are applicable to all materials. There is
briefly discussed very popular in nowadays the SIMS
technique. As is well-known self-diffusion is the migra-
tion of constituent atoms (isotopes) in materials. The
knowledge obtained in self-diffusion studies is pivotal
for the understanding of many important mass transport
process including impurity diffusion in solids to use in
different semiconductor devices.

The new reactor technology-neutron transmutation
doping (NTD) of semiconductors was described in
Chapter 2. Capture of thermal neutrons by isotope nu-
clei followed by nuclear decay produces new elements,
resulting in a very number of possibilities for isotope
selective doping of solids. There are presented different
facilities which use in this reactor technology. The fea-
sibility of constructing reactors dedicated to the produc-
tion of NTD silicon, germanium (and other compounds)
was analyzed in terms of technical and economic viabil-
ity and the practicality of such a proposal is examined.
The importance of this technology for studies of the
semiconductor doping (materials for different devices)
as well as metal-insulator transitions and neutral impu-
rity scattering process is underlined.

The use of the isotopes in a theory and technology
of the optical fibers we considered in Chapter 3. This
chapter is addressed to readers who wish to learn about
fiber communications systems and, particular, about the
properties of optical fibers. Very briefly in this chapter
we describe the Maxwell equations as well as wave
electromagnetic equation. In this chapters we describe
not only the properties of optical fibres but also the
materials for optical fiber and fiber technology. It was
shown also the influence of the isotopes on properties
of the optical fibers.

Chapter 4 is devoted the application of isotope effect
in laser physics. There is short description of theory and
practice of semiconductor lasers. The discovery of the
linear luminescence of free excitons observed over a
wide temperature range has placed lithium hydride [1],
as well as crystals of diamond in line as prospective
sources of coherent radiation in the UV spectral range.
For LiH isotope tuning of the exciton emission has also
been shown.

The last chapter of this book is devoted to description
of the other unexplored applications of isotopic engi-
neering. In the first place we considered the materials
for information storage in modern personal computers
as well as in biology. Large perspective has the isotope-
base quantum computers. We should add here that the
strength of the hyperfine interaction is proportional to

the probability density of the electron wavefunction
at the nucleus. In semiconductors, the electron wave-
function extends over large distances through the crys-
tal lattice. Two nuclear spins can consequently interact
with the same electron, leading to electron-mediated
or indirect nuclear spin coupling. Because the electron
is sensitive to externally applied electric fields, the hy-
perfine interaction and electron-mediated nuclear spin
interaction can be controlled by voltages applied to
metallic gates in a semiconductor device, enabling the
external manipulation of nuclear spin dynamics that is
necessary for quantum computation in quantum com-
puters (details see [177, 383]).

The wide possibilities of isotopic engineering dis-
cussed in this review hold the greatest promise for appli-
cation in solid-state and quantum electronics, biology,
human memory, optoelectronics, different electronic
devices, electronic and quantum computers, and many
other modern and new technologies that are even now
difficult to imaginate. And we should repeat that the
main aim of this review is to familiarize readers with
present and some future applications in isotope science
and engineering.
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(1988) 1327.
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